首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3881篇
  免费   328篇
  国内免费   1篇
  2021年   39篇
  2020年   21篇
  2019年   30篇
  2018年   34篇
  2017年   46篇
  2016年   70篇
  2015年   117篇
  2014年   148篇
  2013年   184篇
  2012年   203篇
  2011年   195篇
  2010年   151篇
  2009年   148篇
  2008年   209篇
  2007年   227篇
  2006年   208篇
  2005年   211篇
  2004年   227篇
  2003年   221篇
  2002年   239篇
  2001年   57篇
  2000年   41篇
  1999年   48篇
  1998年   81篇
  1997年   58篇
  1996年   47篇
  1995年   67篇
  1994年   50篇
  1993年   52篇
  1992年   48篇
  1991年   46篇
  1990年   27篇
  1989年   45篇
  1988年   34篇
  1987年   32篇
  1986年   23篇
  1985年   43篇
  1984年   44篇
  1983年   25篇
  1982年   38篇
  1981年   35篇
  1980年   19篇
  1978年   20篇
  1977年   20篇
  1976年   33篇
  1975年   28篇
  1974年   23篇
  1973年   20篇
  1971年   22篇
  1968年   19篇
排序方式: 共有4210条查询结果,搜索用时 421 毫秒
181.
Recent data suggest that angiogenesis plays an important role in the pathogenesis of valvular disease. However, the cellular mechanisms underlying this process remain unknown. This study aimed at identifying and characterizing the cellular components responsible for pathological neovascularization in calcific aortic valves (CAV). Immunohistochemical analysis of uncultured CAV tissues revealed that smooth muscle alpha-actin (alpha-SMA)-positive cells, which coexpressed Tie-2 and vascular endothelial growth factor receptor-2 (VEGFR-2), can be identified prior to the initiation of capillary-like tube formation. In a second step, leaflets of CAV and non-calcific aortic valves (NCAV) were cultured and the cells involved in capillary-like tube formation were isolated. The majority of these cells displayed the same phenotype as non-cultured cells identified in CAV tissues, i.e., expression of alpha-SMA, Tie-2, and VEGFR-2. In comparison to cells isolated from cultures of NCAV leaflets, these cells showed enhanced angiogenic activity as demonstrated by migration and tube assays. The coexpression of VEGFR-2 and Tie-2 together with alpha-SMA suggests both endothelial and mesenchymal properties of the angiogenically activated cells involved in valvular neovascularization. Hence, our findings might provide new insights into the process of pathological angiogenesis in cardiac valves.  相似文献   
182.
FAN (factor associated with neutral sphingomyelinase [N-SMase] activation) exhibits striking structural homologies to Lyst (lysosomal trafficking regulator), a BEACH protein whose inactivation causes formation of giant lysosomes/Chediak-Higashi syndrome. Here, we show that cells lacking FAN show a statistically significant increase in lysosome size (although less pronounced as Lyst), pointing to previously unrecognized functions of FAN in regulation of the lysosomal compartment. Since FAN regulates activation of N-SMase in complex with receptor for activated C-kinase (RACK)1, a scaffolding protein that recruits and stabilizes activated protein kinase C (PKC) isotypes at cellular membranes, and since an abnormal (calpain-mediated) downregulation/membrane recruitment of PKC has been linked to the defects observed in Lyst-deficient cells, we assessed whether PKC is also of relevance in FAN signaling. Our results demonstrate that activation of PKC is not required for regulation of N-SMase by FAN/RACK1. Conversely, activation of PKC and recruitment/stabilization by RACK1 occurs uniformly in the presence or absence of FAN (and equally, Lyst). Furthermore, regulation of lysosome size by FAN is not coupled to an abnormal downregulation/membrane recruitment of PKC by calpain. Identical results were obtained for Lyst, questioning the previously reported relevance of PKC for formation of giant lysosomes and in Chediak-Higashi syndrome. In summary, FAN mediates activation of N-SMase as well as regulation of lysosome size by signaling pathways that operate independent from activation/membrane recruitment of PKC.  相似文献   
183.
The effect of tyrosine nitration on mammalian GS activity and stability was studied in vitro. Peroxynitrite at a concentration of 5 micro mol/l produced tyrosine nitration and inactivation of GS, whereas 50 micro mol/l peroxynitrite additionally increased S-nitrosylation and carbonylation and degradation of GS by the 20S proteasome. (-)Epicatechin completely prevented both, tyrosine nitration and inactivation of GS by peroxynitrite (5 micro mol/l). Further, a putative "denitrase" activity restored the activity of peroxynitrite (5 micro mol/l)-treated GS. The data point to a potential regulation of GS activity by a reversible tyrosine nitration. High levels of oxidative stress may irreversibly damage and predispose the enzyme to proteasomal degradation.  相似文献   
184.
185.
Altermatt F  Ebert D 《PloS one》2007,2(12):e1280

Background

Different evolutionary hypotheses predict a correlation between the fitness of a genotype in the absence of infection and the likelihood to become infected. The cost of resistance hypothesis predicts that resistant genotypes pay a cost of being resistant and are less fit in the absence of parasites. The inbreeding-infection hypothesis predicts that the susceptible individuals are less fit due to inbreeding depression.

Methods and Results

Here we tested if a host''s natural infection status was associated with its fitness. First, we experimentally confirmed that cured but formerly infected Daphnia magna are genetically more susceptible to reinfections with Octosporea bayeri than naturally uninfected D. magna. We then collected from each of 22 populations both uninfected and infected D. magna genotypes. All were treated against parasites and kept in their asexual phase. We estimated their relative fitness in an experiment against a tester genotype and in another experiment in direct competition. Consistently, we found no difference in competitive abilities between uninfected and cured but formerly infected genotypes. This was the case both in the presence as well as in the absence of sympatric parasites during the competition trials.

Conclusions

Our data do not support the inbreeding-infection hypothesis. They also do not support a cost of resistance, however ignoring other parasite strains or parasite species. We suggest as a possible explanation for our results that resistance genes might segregate largely independently of other fitness associated genes in this system.  相似文献   
186.
187.
Prion diseases are fatal neurodegenerative disorders caused by proteinaceous infectious pathogens termed prions (PrP(Sc)). To date, there is no prophylaxis or therapy available for these transmissible encephalopathies. Passive immunization with monclonal antibodies recognizing the normal host-encoded prion protein (PrP(C)) has been reported to abolish PrP(Sc) infectivity and to delay onset of disease. Because of established immunologic tolerance against the widely expressed PrP(C), active immunization appears to be difficult to achieve. To overcome this limitation, papillomavirus-like particles were generated that display a nine amino acid B-cell epitope, DWEDRYYRE, of the murine/rat prion protein in an immunogenic capsid surface loop, by insertion into the L1 major capsid protein of bovine papillomavirus type 1. The PrP peptide was selected on the basis of its previously suggested central role in prion pathogenesis. Immunization with PrP-virus-like particles induced high-titer antibodies to PrP in rabbit and in rat, without inducing overt adverse effects. As determined by peptide-specific ELISA, rabbit immune sera recognized the inserted murine/rat epitope and also cross-reacted with the homologous rabbit/human epitope differing in one amino acid residue. In contrast, rat immune sera recognized the murine/rat peptide only. Sera of both species reacted with PrP(C) in its native conformation in mouse brain and on rat pheochromocytoma cells, as determined by immunoprecipitation and fluorescence-activated cell sorting analysis. Importantly, rabbit anti-PrP serum contained high-affinity antibody that inhibited de novo synthesis of PrP(Sc) in prion-infected cells. If also effective in vivo, PrP-virus-like particle vaccination opens a unique possibility for immunologic prevention of currently fatal and incurable prion-mediated diseases.  相似文献   
188.
189.
Several raptor species nest on top of large weaver nests. These weaver nests are usually sited in trees, but 11.7% of Red-billed Buffalo-Weaver Bubalornis niger and 25.7% of Sociable Weaver Philetairus socius nests occur on man-made structures. In an extensive literature search, a total of 16 raptor species were recorded as nesting on top of weaver nests. At least 10 raptor species used weaver nests built in trees. Seven raptor species used weaver nests on man-made sites and four raptor species only used weaver nests built on man-made sites. No owls have been recorded as using weaver nests on man-made sites. There are historical records of raptors nesting on top of weaver nests in trees, while nesting on top of weaver nests sited on man-made structures appears to be a more recent adaptation. Costs and benefits of nesting on man-made sites are briefly listed. Nesting on man-made sites may increase (by both weavers and raptors) and raptor researchers are encouraged to document cases of raptors nesting on weaver nests where these are placed in trees or artificial sites, so that there is a record of changes in frequency of nest site usage by raptors.  相似文献   
190.
Post‐translational modifications (PTMs) have emerged as key modulators of protein phase separation and have been linked to protein aggregation in neurodegenerative disorders. The major aggregating protein in amyotrophic lateral sclerosis and frontotemporal dementia, the RNA‐binding protein TAR DNA‐binding protein (TDP‐43), is hyperphosphorylated in disease on several C‐terminal serine residues, a process generally believed to promote TDP‐43 aggregation. Here, we however find that Casein kinase 1δ‐mediated TDP‐43 hyperphosphorylation or C‐terminal phosphomimetic mutations reduce TDP‐43 phase separation and aggregation, and instead render TDP‐43 condensates more liquid‐like and dynamic. Multi‐scale molecular dynamics simulations reveal reduced homotypic interactions of TDP‐43 low‐complexity domains through enhanced solvation of phosphomimetic residues. Cellular experiments show that phosphomimetic substitutions do not affect nuclear import or RNA regulatory functions of TDP‐43, but suppress accumulation of TDP‐43 in membrane‐less organelles and promote its solubility in neurons. We speculate that TDP‐43 hyperphosphorylation may be a protective cellular response to counteract TDP‐43 aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号