首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5951篇
  免费   486篇
  国内免费   1篇
  6438篇
  2022年   27篇
  2021年   61篇
  2020年   29篇
  2019年   57篇
  2018年   64篇
  2017年   69篇
  2016年   126篇
  2015年   193篇
  2014年   231篇
  2013年   314篇
  2012年   353篇
  2011年   356篇
  2010年   259篇
  2009年   237篇
  2008年   342篇
  2007年   352篇
  2006年   327篇
  2005年   302篇
  2004年   337篇
  2003年   316篇
  2002年   328篇
  2001年   70篇
  2000年   61篇
  1999年   77篇
  1998年   113篇
  1997年   75篇
  1996年   74篇
  1995年   86篇
  1994年   73篇
  1993年   64篇
  1992年   67篇
  1991年   59篇
  1990年   42篇
  1989年   50篇
  1988年   43篇
  1987年   45篇
  1986年   35篇
  1985年   59篇
  1984年   57篇
  1983年   38篇
  1982年   58篇
  1981年   55篇
  1980年   29篇
  1979年   27篇
  1978年   26篇
  1977年   28篇
  1976年   41篇
  1975年   32篇
  1974年   30篇
  1973年   28篇
排序方式: 共有6438条查询结果,搜索用时 15 毫秒
91.
Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.  相似文献   
92.
Maize callus cells possess numerous protein bodies which develop as sub-compartments of the endoplasmic reticulum. We localized maize calreticulin mRNAs and protein in maize callus cells using in situ hybridization and immunocytochemistry. Calreticulin mRNAs were selectively targeted to the endoplasmic reticulum (ER) subdomains surrounding protein bodies. Profilin mRNAs, used as a positive control for in situ hybridization experiments, showed distinct and rather diffuse localization pattern. Using both, immunofluorescence and immunogold electron microscopy localization techniques, calreticulin was found to be enriched around and within protein bodies in maize callus storage cells. As a positive control for reticuloplasmins, HDEL antibody revealed labelling of protein bodies and of the nuclear envelope. The identity of protein bodies was confirmed by specific binding of an α zein antibody. These data suggest that calreticulin mRNA is targeted towards protein body forming subdomains of the ER, and that calreticulin is localized and enriched in these protein bodies. The possibility that calreticulin plays an important role in zein retention within the ER and/or its assembly and packaging into protein bodies during protein body biogenesis in maize callus is discussed.  相似文献   
93.

Background

Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively.

Results

We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest.

Conclusions

The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without compromise in image quality or information loss in associated spectra. These results motivate further use of label free microscopy techniques in real-time imaging of live immune cells.  相似文献   
94.
The molecular diversity of rumen methanogens in sheep in Australia was investigated by using individual 16S rRNA gene libraries prepared from the rumen contents obtained from six merino sheep grazing pasture (326 clones), six sheep fed an oaten hay-based diet (275 clones), and five sheep fed a lucerne hay-based diet (132 clones). A total of 733 clones were examined, and the analysis revealed 65 phylotypes whose sequences (1,260 bp) were similar to those of cultivated methanogens belonging to the order Methanobacteriales. Pasture-grazed sheep had more methanogen diversity than sheep fed either the oaten hay or lucerne hay diet. Methanobrevibacter strains SM9, M6, and NT7 accounted for over 90% of the total number of clones identified. M6 was more prevalent in grazing sheep, and SM9, despite being found in 16 of the 17 sheep, was more prevalent in sheep fed the lucerne-based diet. Five new species were identified. Two of these species exhibited very little sequence similarity to any cultivated methanogens and were found eight times in two of the six sheep that were grazing pasture. These unique sequences appear to represent a novel group of rumen archaea that are atypical for the rumen environment.  相似文献   
95.
Listeria monocytogenes, a food-borne bacterial pathogen, enters mammalian cells by inducing its own phagocytosis. The listerial protein internalin (InlA) mediates bacterial adhesion and invasion of epithelial cells in the human intestine through specific interaction with its host cell receptor E-cadherin. We present the crystal structures of the functional domain of InlA alone and in a complex with the extracellular, N-terminal domain of human E-cadherin (hEC1). The leucine rich repeat (LRR) domain of InlA surrounds and specifically recognizes hEC1. Individual interactions were probed by mutagenesis and analytical ultracentrifugation. These include Pro16 of hEC1, a major determinant for human susceptibility to L. monocytogenes infection that is essential for intermolecular recognition. Our studies reveal the structural basis for host tro-pism of this bacterium and the molecular deception L. monocytogenes employs to exploit the E-cadherin system.  相似文献   
96.
97.
This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.  相似文献   
98.
gamma-Secretase is an intramembrane-cleaving aspartyl protease complex that mediates the final cleavage of beta-amyloid precursor protein to liberate the neurotoxic amyloid-beta peptide implicated in Alzheimer's disease. The four proteins presenilin (PS), nicastrin (NCT), APH-1, and PEN-2 are sufficient to reconstitute gamma-secretase activity in yeast. Although PS seems to contribute the catalytic core of the gamma-secretase complex, no distinct function could be attributed to the other components so far. In Caenorhabditis elegans, mutation of a glycine to an aspartic acid within a conserved GXXXG motif in the fourth transmembrane domain of APH-1 causes a loss of function phenotype. Surprisingly, we now found that the human homologue APH-1a carrying the equivalent mutation G122D is fully active in yeast co-expressing PS1, NCT, and PEN-2. To address this discrepancy, we expressed APH-1a G122D in HEK293 cells. As reported previously, overexpressed APH-1a G122D was not incorporated into the gamma-secretase complex. Separate overexpression of PS1, NCT, or PEN-2 together with APH-1a G122D allowed the formation of heterodimers lacking the other endogenous components. Only the combined overexpression of PS1 and NCT together with APH-1a G122D facilitated the formation of a fully active gamma-secretase complex. Under these conditions, APH-1a G122D supported the production of normal amounts of Abeta. We conclude that cooperative effects may stabilize a trim-eric complex of APH-1a G122D together with PS1 and NCT. Upon successful complex assembly, the GXXXG motif becomes dispensable for gamma-secretase activity.  相似文献   
99.
The impact of climate change on herbivorous insects can have far‐reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO2, warming, drought) in a Danish heathland ecosystem. The experiment was established in 2005 as a full factorial split‐plot with 6 blocks × 2 levels of CO2 × 2 levels of warming × 2 levels of drought = 48 plots. In 2008, we exposed 432 larvae (n = 9 per plot) of the heather beetle (Lochmaea suturalis Thomson ), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under the drought treatment, and there was a three‐way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co‐acting factors and were mediated by changes in plant secondary compounds, nitrogen, and water content. Overall, drought was the most important factor for this insect herbivore. Our study shows that weight and survival of insect herbivores may decline under future climate. The complexity of insect herbivore responses increases with the number of combined climate change drivers.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号