首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   64篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2019年   5篇
  2018年   4篇
  2017年   9篇
  2016年   12篇
  2015年   16篇
  2014年   13篇
  2013年   28篇
  2012年   27篇
  2011年   28篇
  2010年   26篇
  2009年   18篇
  2008年   24篇
  2007年   20篇
  2006年   29篇
  2005年   27篇
  2004年   17篇
  2003年   21篇
  2002年   19篇
  2001年   9篇
  2000年   19篇
  1999年   20篇
  1998年   9篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   10篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   8篇
  1989年   9篇
  1988年   12篇
  1987年   7篇
  1986年   6篇
  1985年   7篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1979年   5篇
  1978年   6篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   4篇
  1966年   2篇
排序方式: 共有558条查询结果,搜索用时 31 毫秒
151.

Background

Passive transfer of antibodies not only provides immediate short-term protection against disease, but also can be exploited as a therapeutic tool. However, the ‘humanization’ of murine monoclonal antibodies (mAbs) is a time-consuming and expensive process that has the inherent drawback of potentially altering antigenic specificity and/or affinity. The immortalization of human B cells represents an alternative for obtaining human mAbs, but relies on the availability of biological samples from vaccinated individuals or convalescent patients. In this work we describe a novel approach to generate fully human mAbs by combining a humanized mouse model with a new B cell immortalization technique.

Methodology/Principal Findings

After transplantation with CD34+CD38 human hematopoietic progenitor cells, BALB/c Rag2−/−IL-2Rγc−/− mice acquire a human immune system and harbor B cells with a diverse IgM repertoire. “Human Immune System” mice were then immunized with two commercial vaccine antigens, tetanus toxoid and hepatitis B surface antigen. Sorted human CD19+CD27+ B cells were retrovirally transduced with the human B cell lymphoma (BCL)-6 and BCL-XL genes, and subsequently cultured in the presence of CD40-ligand and IL-21. This procedure allows generating stable B cell receptor-positive B cells that secrete immunoglobulins. We recovered stable B cell clones that produced IgM specific for tetanus toxoid and the hepatitis B surface antigen, respectively.

Conclusion/Significance

This work provides the proof-of-concept for the usefulness of this novel method based on the immunization of humanized mice for the rapid generation of human mAbs against a wide range of antigens.  相似文献   
152.
153.
154.
We investigated the physiology and function of P2Y receptors expressed in human dendritic cells (DCs) differentiated in vitro from CD14+ cells (DC-14). These were obtained after a 10 day stimulation period in GM-CSF, IL-4 and monocyte conditioned medium. DC-14 were found to express high amounts of MHC class II, B7, CD40 as well as CD83. The functional analysis, using single cell Ca2+ imaging, demonstrated the expression of at least three subtypes of P2Y receptors. We further found using patch-clamp measurements that ATP evoked a pertussis toxin insensitive non-selective cation current with a peak current amplitude of -276+/-43 pA (holding potential -80 mV, n = 23). This current was not Ca(2+)-activated, since it was still observed under conditions of high intracellular Ca2+ buffering and could be blocked by Gd3+ (0.5 mM). In addition, intracellular application of GTP-gamma-S (0.3 mM) also activated the current. Interestingly, DC-14 redirected the orientation of their dendrites as well as cell shape towards a pipette containing ATP as observed with time lapse microscopy. These data suggest that in human DCs, ATP acts via P2Y receptors and induces chemokine effects.  相似文献   
155.
Uncoupling proteins, a subgroup of the mitochondrial anion transporter superfamily, have beenidentified in prokaryotes, plants, and mammalian cells. Evolutionary conservation of thesemolecules reflects their importance as regulators of two critical mitochondrial functions, i.e.,ATP synthesis and the production of reactive oxygen species (ROS). Although the amino acidsequences of the three mammalian uncoupling proteins, UCP1, UCP2 and UCP3, are verysimilar, each homolog is the product of a unique gene and important differences have beendemonstrated in their tissue-specific expression and regulation. UCP1 and UCP3 appear to bekey regulators of energy expenditure, and hence, nonshivering thermogenesis, either in brownadipose tissue (UCP1) or skeletal muscle (UCP3). UCP2 is expressed more ubiquitously,although generally at low levels, in many tissues. There is conflicting evidence about itsimportance as a regulator of resting metabolic rate. However, evidence suggests that thishomolog might modulate the mitochondrial generation of ROS in some cell types, includingmacrophages and hepatocytes. While the induction of various uncoupling protein homologsprovides adaptive advantages, both to the organism (e.g., thermogenesis) and to individual cells(e.g., reduced ROS), increased uncoupling protein activity also increases cellular vulnerability tonecrosis by compromising the mitochondrial membrane potential. This narrow risk—benefitmargin necessitates tight control of uncoupling protein activity in order to preserve cellularviability and much remains to be learned about the regulatory mechanisms involved.  相似文献   
156.
The solution structure of the human p47 SEP domain in a construct comprising residues G1-S2-p47(171-270) was determined by NMR spectroscopy. A structure-derived hypothesis about the domains' function was formulated and pursued in binding experiments with cysteine proteases. The SEP domain was found to be a reversible competitive inhibitor of cathepsin L with a Ki of 1.5 μM. The binding of G1-S2-p47(171-270) to cathepsin L was mapped by biochemical assays and the binding interface was investigated by NMR chemical shift perturbation experiments.  相似文献   
157.
The accumulation of unfolded proteins elicits a cellular response that triggers both pro-survival and pro-apoptotic signaling events. PERK-dependent activation of NF-E2-related factor-2 (Nrf2) is critical for survival signaling during this response; however, the mechanism whereby Nrf2 confers a protective advantage to stressed cells remains to be defined. We now demonstrate that Nrf2 activation contributes to the maintenance of glutathione levels, which in turn functions as a buffer for the accumulation of reactive oxygen species during the unfolded protein response. The deleterious effects of Nrf2 or PERK deficiencies could be attenuated by the restoration of cellular glutathione levels or Nrf2 activity. In addition, the inhibition of reactive oxygen species production attenuated apoptotic induction following endoplasmic reticulum stress. Our data suggest that perturbations in cellular redox status sensitize cells to the harmful effects of endoplasmic reticulum stress, but that other factors are essential for apoptotic commitment.  相似文献   
158.
The capacity of the cyclin D-dependent kinase to promote G(1) progression through modulation of RB.E2F is well documented. We now demonstrate that the cyclin D1/CDK4 kinase binds to components of the MCM complex. MCM7 and MCM3 were identified as cyclin D1-binding proteins. Catalytically active cyclin D1/CDK4 complexes were incorporated into chromatin-bound protein complexes with the same kinetics as MCM7 and MCM3, where they associated specifically with MCM7. Although the cyclin D1-dependent kinase did not phosphorylate MCM7, active cyclin D1/CDK4, but not cyclin E/CDK2, did catalyze the dissociation of an RB.MCM7 complex. Finally, expression of an active D1/CDK4 kinase but not cyclin E/CDK2 promoted the removal of RB from chromatin-bound protein complexes. Our data suggest that D1/CDK4 complexes play a direct role in altering an inhibitory RB.MCM7 complex possibly allowing for setting of the origin in preparation for DNA replication.  相似文献   
159.
The virus-encoded nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase and is absolutely required for replication of the virus. NS5B exhibits significant differences from cellular polymerases and therefore has become an attractive target for anti-HCV therapy. Using a high-throughput screen, we discovered a novel NS5B inhibitor that binds to the enzyme noncompetitively with respect to nucleotide substrates. Here we report the crystal structure of NS5B complexed with this small molecule inhibitor. Unexpectedly, the inhibitor is bound within a narrow cleft on the protein's surface in the "thumb" domain, about 30 A from the enzyme's catalytic center. The interaction between this inhibitor and NS5B occurs without dramatic changes to the structure of the protein, and sequence analysis suggests that the binding site is conserved across known HCV genotypes. Possible mechanisms of inhibition include perturbation of protein dynamics, interference with RNA binding, and disruption of enzyme oligomerization.  相似文献   
160.
Details of prohormone processing patterns are revealed by purification and characterization of molecular forms stored in the tissues where the hormones are expressed. Molecular forms of rat gastrin were purified from antral extracts by gel permeation, anion exchange, and reverse-phase HPLC. Amidated and glycine-extended gastrins were detected with specific antisera and their structures determined by mass spectrometry. In rats, the only form shorter than gastrin-17 observed contained 16 amino acids. These data suggest that two enzymes process the amino terminus of gastrin-17. Pyrrolidone carboxylic acid peptidase removes the amino terminal pyrrolidone carboxylic acid (pyroGlu), forming gastrin-16. In mammals other than rat, gastrin-16 is then cleaved by dipeptidyl peptidase IV to form gastrin-14. In rat, this reaction does not take place because of proline residues Pro(2)-Pro(3)- in gastrin-16. Gastrin-16 is found in sulfated and nonsulfated forms and comprises 28% of the total gastrin immunoreactivity. Glycine-extended forms of gastrin-16 and gastrin-17 comprises 45% of the total gastrin immunoreactivity. The sulfated forms of gastrin-16 and gastrin-17 bind to the CCK-B receptor transfected into CHO cells with 10-fold higher affinity than the nonsulfated forms of these peptides. Therefore, processing of rat progastrin may modulate the expression of gastrin biological activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号