首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   567篇
  免费   77篇
  644篇
  2022年   4篇
  2021年   8篇
  2019年   7篇
  2018年   5篇
  2017年   13篇
  2016年   18篇
  2015年   25篇
  2014年   22篇
  2013年   29篇
  2012年   33篇
  2011年   29篇
  2010年   27篇
  2009年   18篇
  2008年   24篇
  2007年   21篇
  2006年   31篇
  2005年   32篇
  2004年   18篇
  2003年   21篇
  2002年   19篇
  2001年   11篇
  2000年   23篇
  1999年   22篇
  1998年   9篇
  1997年   6篇
  1996年   10篇
  1995年   6篇
  1994年   9篇
  1993年   8篇
  1992年   11篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   11篇
  1987年   10篇
  1986年   7篇
  1985年   7篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1979年   5篇
  1978年   8篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1973年   4篇
  1972年   3篇
  1969年   4篇
  1966年   2篇
  1965年   2篇
排序方式: 共有644条查询结果,搜索用时 0 毫秒
91.
A recent meta‐analysis indicates that trophic cascades (indirect effects of predators on plants via herbivores) are weak in marine plankton in striking contrast to freshwater plankton ( Shurin et al. 2002 , Ecol. Lett., 5, 785–791). Here we show that in a marine plankton community consisting of jellyfish, calanoid copepods and algae, jellyfish predation consistently reduced copepods but produced two distinct, opposite responses of algal biomass. Calanoid copepods act as a switch between alternative trophic cascades along food chains of different length and with counteracting effects on algal biomass. Copepods reduced large algae but simultaneously promoted small algae by feeding on ciliates. The net effect of jellyfish on total algal biomass was positive when large algae were initially abundant in the phytoplankton, negative when small algae were dominant, but zero when experiments were analysed in combination. In contrast to marine systems, major pathways of energy flow in Daphnia‐dominated freshwater systems are of similar chain length. Thus, differences in the length of alternative, parallel food chains may explain the apparent discrepancy in trophic cascade strength between freshwater and marine planktonic systems.  相似文献   
92.
Binding of parathyroid hormone onto B-lymphocytes is detected by the utilization of the labelled antibody membrane assay. The amount of parathyroid hormone bound to the receptor sites was depending on the quantity of cells in the incubation milieu. Each cell line showed typical characteristics in time course of parathyroid hormone binding and maximal receptor capacity. Fragmentation of intact parathyroid hormone, also varying with the cell line tested, was very rapid, even at 24 degrees C. Within 20 min most of the cell lines destroyed 20% of the native hormone in the incubation mixture, indicating a fragmentation rate of up to 2.25 ng/min at 37 degrees C. Bmax and KD for the different lymphocytes was 5.3--19 . 10(11) M and 1.8--18,5 . 10(11) M, respectively. These values are in the range of reported plasma concentrations and may therefore represent more physiological values for the capacity and affinity of membrane receptors.  相似文献   
93.
Bovine pancreatic ribonuclease (RNase) A and S protein (enzymatically inactive proteolytic fragment of RNase A which contains RNA binding site) stimulate the activation, as evidenced by increasing DNA-cellulose binding, of highly purified rat hepatic glucocorticoid-receptor complexes. These effects are dose dependent with maximal stimulation of DNA-cellulose binding being detected at approximately 500 micrograms (50 units of RNase A/mL). RNase A and S protein do not enhance DNA-cellulose binding via their ability to interact directly with DNA or to increase nonspecific binding of receptors to cellulose. Neither S peptide (enzymatically inactive proteolytic fragment which lacks RNA binding site) nor cytochrome c, a nonspecific basic DNA binding protein, mimics these effects. RNase A and S protein do not stimulate the conformational change which is associated with activation and is reflected in a shift in the elution profile of receptor complexes from DEAE-cellulose. In contrast, these two proteins interact with previously heat-activated receptor complexes to further enhance their DNA-cellulose binding capacity and thus mimic the effects of an endogenous heat-stable cytoplasmic protein(s) which also function(s) during step 2 of in vitro activation [Schmidt, T. J., Miller-Diener, A., Webb, M. L., & Litwack, G. (1985) J. Biol. Chem. 260, 16255-16262]. Preadsorption of RNase A and S protein to an RNase affinity resin containing an inhibitory RNA analogue, or trypsin digestion of the RNA binding site within S protein, eliminates the subsequent ability of these two proteins to stimulate DNA-cellulose binding of the purified receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
94.
95.
96.
97.
98.
99.
Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines and then applied multiplexed inhibitor bead/MS to monitor changes in kinase activity and/or expression. We hypothesized that depletion of KRAS would result in downregulation of kinases required for KRAS-mediated transformation and in upregulation of other kinases that could potentially compensate for the deleterious consequences of the loss of KRAS. We identified 15 upregulated and 13 downregulated kinases in common across the panel of cell lines. In agreement with our hypothesis, all 15 of the upregulated kinases have established roles as cancer drivers (e.g., SRC, TGF-β1, ILK), and pharmacological inhibition of one of these upregulated kinases, DDR1, suppressed PDAC growth. Interestingly, 11 of the 13 downregulated kinases have established driver roles in cell cycle progression, particularly in mitosis (e.g., WEE1, Aurora A, PLK1). Consistent with a crucial role for the downregulated kinases in promoting KRAS-driven proliferation, we found that pharmacological inhibition of WEE1 also suppressed PDAC growth. The unexpected paradoxical activation of ERK upon WEE1 inhibition led us to inhibit both WEE1 and ERK concurrently, which caused further potent growth suppression and enhanced apoptotic death compared with WEE1 inhibition alone. We conclude that system-wide delineation of the KRAS-regulated kinome can identify potential therapeutic targets for KRAS-mutant pancreatic cancer.  相似文献   
100.
The ectoparasitic mite Varroa jacobsoni reproduces in the capped brood of the honey bees Apis cerana and Apis mellifera. Observations on the reproductive behavior of the mite have shown a well-structured spatial allocation of its activity using the bee or cell wall for different behaviors. The resulting advantages for the parasite of this subdivision of the concealed brood environment suggests an important role for chemostimuli in these substrates. Extracts of the European honey bee cocoons induce a strong arrestment response in the mite, as indicated by prolonged periods of walking on the extracts applied on a semipermeable membrane and by systematically returning to the stimulus after encountering the treatment borders. Two thin-layer chromatography fractions of the cocoon extract eliciting arrestment were found to contain saturated C17 to C22 primary aliphatic alcohols and C19 to C22 aldehydes. We analyzed extracts of the cocoon and different larvae, pupae, and adults of both worker and drone A. mellifera to determine the relative amounts of these chemostimuli in the different substrates employed by Varroa. Both aldehydes and alcohols were more abundant in the cocoon than in the cuticle of adult or developing bees. Mixtures of the aliphatic alcohols and aldehydes at the proportions found in the cocoons acted synergistically on the arrestment response, but this activity disappeared when mixed in equal amounts. When these oxygenated chemostimuli were mixed with C19 to C25 alkanes at the proportions found in the cocoon extract, we observed a significantly lower threshold for the chemostimulant mixture. These results indicate how Varroa may use mixtures of rarer products to differentiate between substrates and host stages during its developmental cycle within honey bee brood cells. Arch. Insect Biochem. Physiol. 37:129–145, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号