首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   567篇
  免费   77篇
  2022年   4篇
  2021年   8篇
  2019年   7篇
  2018年   5篇
  2017年   13篇
  2016年   18篇
  2015年   25篇
  2014年   22篇
  2013年   29篇
  2012年   33篇
  2011年   29篇
  2010年   27篇
  2009年   18篇
  2008年   24篇
  2007年   21篇
  2006年   31篇
  2005年   32篇
  2004年   18篇
  2003年   21篇
  2002年   19篇
  2001年   11篇
  2000年   23篇
  1999年   22篇
  1998年   9篇
  1997年   6篇
  1996年   10篇
  1995年   6篇
  1994年   9篇
  1993年   8篇
  1992年   11篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   11篇
  1987年   10篇
  1986年   7篇
  1985年   7篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1979年   5篇
  1978年   8篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1973年   4篇
  1972年   3篇
  1969年   4篇
  1966年   2篇
  1965年   2篇
排序方式: 共有644条查询结果,搜索用时 15 毫秒
81.
82.
Free‐fatty acids (FFAs) are well‐characterized factor for causing production of inflammatory factors and insulin resistance in adipocytes. Using cultured adipocytes, we demonstrate that FFAs can activate endoplasmic reticulum (ER) stress pathway by examination of ER stress sensor activation and marker gene expression. Chemical chaperone tauroursodeoxycholic acid (TUDCA) can reduce FFA‐induced adipocyte inflammation and improve insulin signaling whereas overexpression of spliced X‐box protein 1 (XBP‐1s) only attenuates FFA‐induced inflammation. PKR‐like eukaryotic initiation factor 2α kinase (PERK) is one of the three major ER stress sensor proteins and deficiency of PERK alleviates FFA‐induced inflammation and insulin resistance. The key downstream target of FFA‐induced ER stress is IκB kinase β (IKKβ), a master kinase for regulating expression of inflammatory genes. Deficiency of PERK attenuates FFA‐induced activation of IKKβ and deficiency of IKKβ alleviates FFA‐induced inflammation and insulin resistance. Consistently, overexpression of IKKβ in 3T3‐L1 CAR adipocytes causes inflammation and insulin resistance. In addition, IKKβ overexpression has profound effect on adipocyte lipid metabolism, including inhibition of lipogenesis and promotion of lipolysis. Furthermore, increased endogenous IKKβ expression and activation is also observed in isolated primary adipocytes from mice injected with lipids or fed on high‐fat diet (HFD) acutely. These results indicate that ER stress pathway is a key mediator for FFA‐induced inflammation and insulin resistance in adipocytes with PERK and IKKβ as the critical signaling components.  相似文献   
83.
The commonness of omnivory in natural communities is puzzling, because simple dynamic models of tri-trophic systems with omnivory are prone to species extinction. In particular, the intermediate consumer is frequently excluded by the omnivore at high levels of enrichment. It has been suggested that adaptive foraging by the omnivore may facilitate coexistence, because the intermediate consumer should persist more easily if it is occasionally dropped from the omnivore's diet. We explore theoretically how species permanence in tri-trophic systems is affected if the omnivore forages adaptively according to the "diet rule", i.e., feeds on the less profitable of its two prey species only if the more profitable one is sufficiently rare. We show that, compared to systems where omnivory is fixed, adaptive omnivory may indeed facilitate 3-species persistence. Counter to intuition, however, facilitation of 3-species coexistence requires that the intermediate consumer is a more profitable prey than the basal resource. Consequently, adaptive omnivory does not facilitate persistence of the intermediate consumer but enlarges the persistence region of the omnivore towards parameter space where a fixed omnivore would be excluded by the intermediate consumer. Overall, the positive effect of adaptive omnivory on 3-species persistence is, however, small. Generally, whether omnivory is fixed or adaptive, 3-species permanence is most likely when profitability (=conversion efficiency into omnivores) is low for basal resources and high for intermediate consumers.  相似文献   
84.
McElroy TC  Diehl WJ 《Heredity》2005,94(2):258-263
The effect of ontogeny on relationships between allozyme genotypes and fresh weight was measured weekly throughout the life history of the earthworm Eisenia andrei to test the hypothesis that there is an ontogenetic component to variation in such relationships. Two of six allozyme loci showed a significant increase in apparent heterosis with ontogeny, while one locus showed a significant decrease in apparent heterosis. Three loci showed a significant decrease in the performance of common homozygotes with ontogeny. Patterns of relative genotypic performance varied among loci, but the cumulative effect was an increase in apparent allozyme heterosis later in ontogeny coinciding with a series of positive relationships between multilocus heterozygosity and fresh weight. The results could not be used to determine whether these patterns were caused by selection acting on the loci directly or on loci tightly linked to allozyme loci. However, because the same individuals were used throughout this study and thus allele frequencies and heterozygote deficiency were constant, the presence of both ontogenetic effects and differences in such patterns among loci is not compatible with a general inbreeding effect. Examining relative genotypic performance repetitively using the same individuals through ontogeny or in different environments is a very powerful experimental design for testing the effects of inbreeding or other populational factors.  相似文献   
85.
The solution structure of an N-terminally extended construct of the SODD BAG domain was determined by nuclear magnetic resonance spectroscopy. A homology model of the SODD-BAG/HSP70 complex reveals additional possible interactions that are specific for the SODD subfamily of BAG domains while the overall geometry of the complex remains the same. Relaxation rate measurements show that amino acids N358-S375 of SODD which were previously assigned to its BAG domain are not structured in our construct. The SODD BAG domain is thus indeed smaller than the homologous domain in Bag1 defining a new subfamily of BAG domains.  相似文献   
86.
Gallbladder disease (GBD) is one of the major digestive diseases. Its risk factors include age, sex, obesity, type 2 diabetes, and metabolic syndrome (MS). The prevalence of GBD is high in minority populations, such as Native and Mexican Americans. Ethnic differences, familial aggregation of GBD, and the identification of susceptibility loci for gallstone disease by use of animal models suggest genetic influences on GBD. However, the major susceptibility loci for GBD in human populations have not been identified. Using ultrasound-based information on GBD occurrence and a 10-cM gene map, we performed multipoint variance-components analysis to localize susceptibility loci for GBD. Phenotypic and genotypic data from 715 individuals in 39 low-income Mexican American families participating in the San Antonio Family Diabetes/Gallbladder Study were used. Two GBD phenotypes were defined for the analyses: (1) clinical or symptomatic GBD, the cases of cholecystectomies due to stones confirmed by ultrasound, and (2) total GBD, the clinical GBD cases plus the stone carriers newly diagnosed by ultrasound. With use of the National Cholesterol Education Program/Adult Treatment Panel III criteria, five MS risk factors were defined: increased waist circumference, hypertriglyceredemia, low high-density lipoprotein cholesterol, hypertension, and high fasting glucose. The MS risk-factor score (range 0-5) for a given individual was used as a single, composite covariate in the genetic analyses. After accounting for the effects of age, sex, and MS risk-factor score, we found stronger linkage signals for the symptomatic GBD phenotype. The highest LOD scores (3.7 and 3.5) occurred on chromosome 1p between markers D1S1597 and D1S407 (1p36.21) and near marker D1S255 (1p34.3), respectively. Other genetic locations (chromosomes 2p, 3q, 4p, 8p, 9p, 10p, and 16q) across the genome exhibited some evidence of linkage (LOD >or=1.2) to symptomatic GBD. Some of these chromosomal regions corresponded with the genetic locations of Lith loci, which influence gallstone formation in mouse models. In conclusion, we found significant evidence of major genetic determinants of symptomatic GBD on chromosome 1p in Mexican Americans.  相似文献   
87.
88.
The assembly of molecular motor proteins into multi-unit protein complexes plays an important role in determining the intracellular transport and trafficking properties of many subcellular commodities. Yet, it is not known how proteins within these complexes interact and function collectively. Considering the established ties between motor transport and diseases, it has become increasingly important to investigate the functional properties of these essential transport ‘motifs’. Doing so requires that the composite motile and force-generating properties of multi-unit motor assemblies are characterized. However, such analyses are typically confounded by a lack of understanding of the links between the structural and mechanical properties of many motor complexes. New experimental challenges also emerge when one examines motor cooperation. Distributions in the mechanical microstates available to motor ensembles must be examined in order to fully understand the transport behavior of multi-motor complexes. Furthermore, mechanisms by which motors communicate must be explored to determine whether motor groups can move cargo together in a truly cooperative fashion. Resolving these issues requires the development of experimental methods that allow the dynamics of complex systems of transport proteins to be monitored with the same precision available to single-molecule biophysical assays. Herein, we discuss key fundamental principles governing the function of motor complexes and their relation to mechanisms that regulate intracellular cargo transport. We also outline new experimental strategies to resolve these essential features of intracellular transport.  相似文献   
89.
Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg(-1) protein for Kre1/EstA/Cwp2p and 72 mU mg(-1) protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg(-1) protein for Kre1/EstA/Cwp2p and 1.27 U mg(-1) protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.  相似文献   
90.
Sato T  Nyborg AC  Iwata N  Diehl TS  Saido TC  Golde TE  Wolfe MS 《Biochemistry》2006,45(28):8649-8656
Signal peptide peptidase (SPP) is an intramembrane aspartyl protease that cleaves remnant signal peptides after their release by signal peptidase. SPP contains active site motifs also found in presenilin, the catalytic component of the gamma-secretase complex of Alzheimer's disease. However, SPP has a membrane topology opposite that of presenilin, cleaves transmembrane substrates of opposite directionality, and does not require complexation with other proteins. Here we show that, upon isolation of membranes and solubilization with detergent, the biochemical characteristics of SPP are remarkably similar to gamma-secretase. The majority of the SPP-catalyzed cleavages occurred at a single site in a synthetic substrate based on the prolactin (Prl) signal sequence. However, as seen with cleavage of substrates by gamma-secretase, additional cuts at other minor sites are also observed. Like gamma-secretase, SPP is inhibited by helical peptidomimetics and apparently contains a substrate-binding site that is distinct from the active site. Surprisingly, certain nonsteroidal antiinflammatory drugs known to shift the site of proteolysis by gamma-secretase also alter the cleavage site of Prl by SPP. Together, these findings suggest that SPP and presenilin share certain biochemical properties, including a conserved drug-binding site for allosteric modulation of substrate proteolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号