首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   68篇
  591篇
  2022年   5篇
  2021年   10篇
  2019年   5篇
  2018年   5篇
  2017年   8篇
  2016年   13篇
  2015年   21篇
  2014年   18篇
  2013年   29篇
  2012年   27篇
  2011年   26篇
  2010年   23篇
  2009年   16篇
  2008年   27篇
  2007年   21篇
  2006年   29篇
  2005年   27篇
  2004年   19篇
  2003年   22篇
  2002年   23篇
  2001年   8篇
  2000年   21篇
  1999年   19篇
  1998年   8篇
  1997年   5篇
  1996年   6篇
  1995年   8篇
  1994年   10篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   10篇
  1987年   8篇
  1986年   7篇
  1985年   8篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1979年   5篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1972年   3篇
  1970年   2篇
  1969年   3篇
  1966年   2篇
排序方式: 共有591条查询结果,搜索用时 15 毫秒
21.

Background  

Recent increases in the volume and diversity of life science data and information and an increasing emphasis on data sharing and interoperability have resulted in the creation of a large number of biological ontologies, including the Cell Ontology (CL), designed to provide a standardized representation of cell types for data annotation. Ontologies have been shown to have significant benefits for computational analyses of large data sets and for automated reasoning applications, leading to organized attempts to improve the structure and formal rigor of ontologies to better support computation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL's utility for computation and for cross-species data integration.  相似文献   
22.
R. K. Koehn  W. J. Diehl    T. M. Scott 《Genetics》1988,118(1):121-130
The locus-specific effects of heterozygosity upon individual growth rate were determined for 15 polymorphic enzymes among 1906 individuals from a single cohort sample of the marine bivalve Mulinia lateralis. Two measures of individual growth rate (total wet weight and shell length) were made at collection and after a period of growth in the laboratory. The correlation between heterozygosity and growth rate was independently determined for each locus using multiple linear regression, thereby providing a rank of individual locus effects; these differed significantly. The four estimated rankings of relative locus effects (initial length, initial weight, length added in the laboratory, and added weight) were not statistically different. That is, a locus with a large effect of heterozygosity on growth rate in nature had a similarly large effect on laboratory growth rate. The effect of a locus was not related to heterozygosity per se; some highly heterozygous loci had no detectable correlation with growth rate. The data contained two pairs of relatively tightly linked loci; in both cases one locus of a pair had significant effects on growth rate, while the other had no effect. Loci with large and significant correlations with growth rate synthesize enzymes which function in protein catabolism or glycolysis; heterozygosity in enzymes of the pentose shunt, redox balance, or other miscellaneous metabolic roles was not correlated with growth rate. Since the metabolic basis for the correlation is known to derive from individual differences in net energy status, particularly energetic costs of whole-body protein turnover, these data indicate that phenotypic effects (e.g., variation in growth rate) are determined by heterozygosity at the studied genes, not other linked loci.  相似文献   
23.
Summary Inhibition of growth and speed of kill by biocides with different mechanisms of action was examined with respect to intracellular glutathione levels. strain deficient in intracellular glutathione was hypersusceptible to electrophilic biocides, with the exception of an isothiazolone biocide. Growth inhibition by quaternary ammonium compounds and radical-generating biocides was unaffected by intracellular glutathione levels. Speed of kill experiments demonstrated a faster rate of killing by formaldehyde in both log and stationary phase cultures of the glutathione-deficient strain as compared to its wild-type parent. Glutathione levels had no effect on the speed of kill by hydrogen peroxide in log phase cultures, but resulted in an increased rate of killing in stationary phase cultures. Stationary phase cultures of the glutathione-deficient strain were killed by a quaternary ammonium biocide at a slower than the glutathione-replete strain. These studies provide information about both the mechanism of action of biocides as well as the role of glutathione in determining microbicide susceptibility.  相似文献   
24.
25.
Only recently has the importance of positive interactions among plant species in structuring natural communities been supported by experimental evidence. Most studies have focused on interactions between a pair of species at a single life-history stage. In this study positive interactions between a woody nitrogen-fixing shrub (Myrica pensylvanica) and two herbaceous sand dune species (Solidago sempervirens, Ammophila breviligulata) which frequently grow beneath shrub canopies are examined throughout the life cycles of the herbaceous species. Comparisons of S. sempervirens and A. breviligulata growing beneath and outside M. pensylvanica shrubs show that plants growing in association with shrubs are larger, are more likely to flower, produce greater numbers of flowers and seeds, have higher midday xylem water potentials, have higher tissue nitrogen concentrations, and have higher photosynthetic efficiencies. Measurements of environmental conditions show that areas beneath shrubs are more shaded, have lower soil temperatures, and have higher soil nitrogen levels. The results from experimental manipulations designed to test the effects of Myrica shrubs on understory species suggest that the observed differences in plant performance are strongly influenced by canopy shading and soil nutrient enrichment associated with the shrubs. The results demonstrate that M. pensylvanica facilitates growth, reproduction, and recruitment of S. sempervirens and A. breviligulata growing beneath it. This study, one of the few to examine positive interactions at different life-history stages, supports previous predictions that positive interactions may be particularly important in plant communities characterized by physiologically stressful conditions. Received: 21 July 1999 / Accepted: 18 January 2000  相似文献   
26.
27.
A Trypanosoma cruzi cysteine protease inhibitor, termed chagasin, is the first characterized member of a new family of tight-binding cysteine protease inhibitors identified in several lower eukaryotes and prokaryotes but not present in mammals. In the protozoan parasite T.cruzi, chagasin plays a role in parasite differentiation and in mammalian host cell invasion, due to its ability to modulate the endogenous activity of cruzipain, a lysosomal-like cysteine protease. In the present work, we determined the solution structure of chagasin and studied its backbone dynamics by NMR techniques. Structured as a single immunoglobulin-like domain in solution, chagasin exerts its inhibitory activity on cruzipain through conserved residues placed in three loops in the same side of the structure. One of these three loops, L4, predicted to be of variable length among chagasin homologues, is flexible in solution as determined by measurements of (15)N relaxation. The biological implications of structural homology between chagasin and other members of the immunoglobulin super-family are discussed.  相似文献   
28.
The assembly of molecular motor proteins into multi-unit protein complexes plays an important role in determining the intracellular transport and trafficking properties of many subcellular commodities. Yet, it is not known how proteins within these complexes interact and function collectively. Considering the established ties between motor transport and diseases, it has become increasingly important to investigate the functional properties of these essential transport ‘motifs’. Doing so requires that the composite motile and force-generating properties of multi-unit motor assemblies are characterized. However, such analyses are typically confounded by a lack of understanding of the links between the structural and mechanical properties of many motor complexes. New experimental challenges also emerge when one examines motor cooperation. Distributions in the mechanical microstates available to motor ensembles must be examined in order to fully understand the transport behavior of multi-motor complexes. Furthermore, mechanisms by which motors communicate must be explored to determine whether motor groups can move cargo together in a truly cooperative fashion. Resolving these issues requires the development of experimental methods that allow the dynamics of complex systems of transport proteins to be monitored with the same precision available to single-molecule biophysical assays. Herein, we discuss key fundamental principles governing the function of motor complexes and their relation to mechanisms that regulate intracellular cargo transport. We also outline new experimental strategies to resolve these essential features of intracellular transport.  相似文献   
29.
The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.  相似文献   
30.
Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines and then applied multiplexed inhibitor bead/MS to monitor changes in kinase activity and/or expression. We hypothesized that depletion of KRAS would result in downregulation of kinases required for KRAS-mediated transformation and in upregulation of other kinases that could potentially compensate for the deleterious consequences of the loss of KRAS. We identified 15 upregulated and 13 downregulated kinases in common across the panel of cell lines. In agreement with our hypothesis, all 15 of the upregulated kinases have established roles as cancer drivers (e.g., SRC, TGF-β1, ILK), and pharmacological inhibition of one of these upregulated kinases, DDR1, suppressed PDAC growth. Interestingly, 11 of the 13 downregulated kinases have established driver roles in cell cycle progression, particularly in mitosis (e.g., WEE1, Aurora A, PLK1). Consistent with a crucial role for the downregulated kinases in promoting KRAS-driven proliferation, we found that pharmacological inhibition of WEE1 also suppressed PDAC growth. The unexpected paradoxical activation of ERK upon WEE1 inhibition led us to inhibit both WEE1 and ERK concurrently, which caused further potent growth suppression and enhanced apoptotic death compared with WEE1 inhibition alone. We conclude that system-wide delineation of the KRAS-regulated kinome can identify potential therapeutic targets for KRAS-mutant pancreatic cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号