首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4843篇
  免费   425篇
  国内免费   2篇
  2024年   5篇
  2023年   46篇
  2022年   96篇
  2021年   189篇
  2020年   122篇
  2019年   153篇
  2018年   181篇
  2017年   155篇
  2016年   217篇
  2015年   303篇
  2014年   300篇
  2013年   371篇
  2012年   423篇
  2011年   421篇
  2010年   251篇
  2009年   205篇
  2008年   281篇
  2007年   281篇
  2006年   231篇
  2005年   173篇
  2004年   169篇
  2003年   154篇
  2002年   141篇
  2001年   35篇
  2000年   25篇
  1999年   32篇
  1998年   32篇
  1997年   21篇
  1996年   30篇
  1995年   18篇
  1994年   15篇
  1993年   15篇
  1992年   26篇
  1991年   15篇
  1990年   19篇
  1989年   10篇
  1988年   11篇
  1987年   10篇
  1986年   10篇
  1985年   14篇
  1984年   6篇
  1983年   4篇
  1982年   8篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   6篇
  1977年   6篇
  1968年   2篇
  1964年   3篇
排序方式: 共有5270条查询结果,搜索用时 968 毫秒
151.
Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET) that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM) to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd) and salinity controls (SC: without canal water). CWd were prepared by diluting the water effluent (sampled during the pesticide application period) with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses.  相似文献   
152.
The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC), in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could highlight the direct effect of temperature on organism fitness, providing a powerful framework for testing thermal adaptation hypotheses. Inter-and intraspecific differences in this performance curve are also reflected in thermal tolerances limits (e.g., critical and lethal limits), influencing the biogeographic patterns of species’ distribution. Within this context, here we investigated the intraspecific variation in thermal sensitivities and thermal tolerances in three populations of the invasive snail Cornu aspersum across a geographical gradient, characterized by different climatic conditions. Thus, we examined population differentiation in the TPCs, thermal-coma recovery times, expression of heat-shock proteins and standard metabolic rate (i.e., energetic costs of physiological differentiation). We tested two competing hypotheses regarding thermal adaptation (the “hotter is better” and the generalist-specialist trade-offs). Our results show that the differences in thermal sensitivity among populations of C. aspersum follow a latitudinal pattern, which is likely the result of a combination of thermodynamic constraints (“hotter is better”) and thermal adaptations to their local environments (generalist-specialist trade-offs). This finding is also consistent with some thermal tolerance indices such as the Heat-Shock Protein Response and the recovery time from chill-coma. However, mixed responses in the evaluated traits suggest that thermal adaptation in this species is not complete, as we were not able to detect any differences in neither energetic costs of physiological differentiation among populations, nor in the heat-coma recovery.  相似文献   
153.
154.

Aims

Glutathione (GSH) plays an important role in protecting cells against oxidative damage. ABCC1 protein transports GSH. Although this protein is largely studied in cancer, due to multidrug resistance phenotype, its role in the tubular cells of the kidney is unknown. The goal of this study was to find out whether ABCC1 has a role in protecting cells from the distal nephron against the stress caused by high medullar osmolality.

Main Methods

MA104 cells were treated with high concentrations of sodium chloride, urea, or both to raise the osmolality of the culture medium. Cell viability was accessed by MTT and trypan blue assays. ABCC1 expression and extrusion of carboxi-fluorescein (CF), a fluorescent ABCC1 substrate, were measured by flow cytometry.

Key Findings

Incubation of MA104 cells in a high sodium concentration medium resulted in changes in cell granularity and altered expression and activity of ABCC1. Urea did not alter ABCC1 expression or activity, but reversed the observed NaCl effects. High sodium concentrations also had a negative effect on cell viability and urea also protected cells against this effect.

Significance

Our findings demonstrate that ABCC1 plays a significant role in the protection of kidney epithelial cells against the stress caused by high sodium environment present in renal medulla.  相似文献   
155.
One of the applications of genomics is to identify genetic markers linked to loci responsible for variation in phenotypic traits, which could be used in breeding programs to select individuals with favorable alleles, particularly at the seedling stage. With this aim, in the framework of the European project FruitBreedomics, we selected five main peach fruit characters and a resistance trait, controlled by major genes with Mendelian inheritance: fruit flesh color Y, fruit skin pubescence G, fruit shape S, sub-acid fruit D, stone adhesion-flesh texture F-M, and resistance to green peach aphid Rm2. They were all previously mapped in Prunus. We then selected three F1 and three F2 progenies segregating for these characters and developed genetic maps of the linkage groups including the major genes, using the single nucleotide polymorphism (SNP) genome-wide scans obtained with the International Peach SNP Consortium (IPSC) 9K SNP array v1. We identified SNPs co-segregating with the characters in all cases. Their positions were in agreement with the known positions of the major genes. The number of SNPs linked to each of these, as well as the size of the physical regions encompassing them, varied depending on the maps. As a result, the number of useful SNPs for marker-assisted selection varied accordingly. As a whole, this study establishes a sound basis for further development of MAS on these characters. Additionally, we also discussed some limitations that were observed regarding the SNP array efficiency.  相似文献   
156.
The photophysical properties and solar cell performance of the classical donor–acceptor copolymer PCDTBT (poly(N‐9′‐heptadecanyl‐2,7‐carbazole‐alt ‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole))) in relation to unintentionally formed main chain defects are investigated. Carbazole–carbazole homocouplings (Cbz hc) are found to significant extent in PCDTBT made with a variety of Suzuki polycondensation conditions. Cbz hc vary between 0 and 8 mol% depending on the synthetic protocol used, and are quantified by detailed nuclear magnetic resonance spectroscopy including model compounds, which allows to establish a calibration curve from optical spectroscopy. The results are corroborated by extended time‐dependent density functional theory investigations on the structural, electronic, and optical properties of regularly alternating and homocoupled chains. The photovoltaic properties of PCDTBT:fullerene blend solar cells significantly depend on the Cbz hc content for constant molecular weight, whereby an increasing amount of Cbz hc leads to strongly decreased short circuit currents JSC. With increasing Cbz hc content, JSC decreases more strongly than the intensity of the low energy absorption band, suggesting that small losses in absorption cannot explain the decrease in JSC alone, rather than combined effects of a more localized LUMO level on the TBT unit and lower hole mobilities found in highly defective samples. Homocoupling‐free PCDTBT with optimized molecular weight yields the highest efficiency up to 7.2% without extensive optimization.  相似文献   
157.
The aims of the study were to: (i) identify differentially regulated proteins in cerebrospinal fluid (CSF) between multiple sclerosis (MS) patients and non‐MS controls; (ii) examine the effect of matching the CSF samples on either total protein amount or volume, and compare four protein normalization strategies for CSF protein quantification. CSF from MS patients (n = 37) and controls (n = 64), consisting of other noninflammatory neurological diseases (n = 50) and non neurological spinal anesthetic subjects (n = 14), were analyzed using label‐free proteomics, quantifying almost 800 proteins. In total, 122 proteins were significantly regulated (p < 0.05), where 77 proteins had p‐value <0.01 or AUC value >0.75. Hierarchical clustering indicated that there were two main groups of MS patients, those with increased levels of inflammatory response proteins and decreased levels of proteins involved in neuronal tissue development (n = 30), and those with normal protein levels for both of these protein groups (n = 7). The main subgroup of controls clustering with the MS patients showing increased inflammation and decreased neuronal tissue development were patients suffering from chronic fatigue. Our data indicate that the preferable way to quantify proteins in CSF is to first match the samples on total protein amount and then normalize the data based on the median intensities, preferably from the CNS‐enriched proteins.  相似文献   
158.
Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form.  相似文献   
159.
160.
BackgroundFirst-degree relatives (FDR) of patients with colorectal cancer have a higher risk of developing colorectal cancer than the general population. For this reason, screening guidelines recommend colonoscopy every 5 or 10 y, starting at the age of 40, depending on whether colorectal cancer in the index-case is diagnosed at <60 or ≥60 y, respectively. However, studies on the risk of neoplastic lesions are inconclusive. The aim of this study was to determine the risk of advanced neoplasia (three or more non-advanced adenomas, advanced adenoma, or invasive cancer) in FDR of patients with colorectal cancer compared to average-risk individuals (i.e., asymptomatic adults 50 to 69 y of age with no family history of colorectal cancer).ConclusionsIndividuals having two FDR with colorectal cancer showed an increased risk of advanced neoplasia compared to those with average-risk for colorectal cancer. Men had over 2-fold higher risk of advanced neoplasia than women, independent of family history. These data suggest that screening colonoscopy guidelines should be revised in the familial-risk population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号