首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3841篇
  免费   326篇
  国内免费   2篇
  4169篇
  2024年   8篇
  2023年   46篇
  2022年   95篇
  2021年   161篇
  2020年   98篇
  2019年   130篇
  2018年   139篇
  2017年   128篇
  2016年   187篇
  2015年   238篇
  2014年   242篇
  2013年   299篇
  2012年   330篇
  2011年   355篇
  2010年   211篇
  2009年   154篇
  2008年   200篇
  2007年   220篇
  2006年   167篇
  2005年   141篇
  2004年   145篇
  2003年   118篇
  2002年   100篇
  2001年   26篇
  2000年   16篇
  1999年   30篇
  1998年   21篇
  1997年   13篇
  1996年   23篇
  1995年   12篇
  1994年   8篇
  1993年   10篇
  1992年   17篇
  1991年   11篇
  1990年   7篇
  1989年   8篇
  1988年   8篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1978年   3篇
  1977年   3篇
  1973年   2篇
  1972年   2篇
  1968年   3篇
  1957年   1篇
排序方式: 共有4169条查询结果,搜索用时 15 毫秒
41.
Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-Ga3PDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg(2+) or Mn(2+) (being Ca(2+) independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRK1 subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRK1s from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia oleracea] leaves, SnRK1) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRK1 present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.  相似文献   
42.
The use of length-heterogeneity PCR was explored to monitor lactic acid bacteria succession during ensiling of maize. Bacterial diversity was studied during the fermentation of 30-day-old maize in optimal and spoilage-simulating conditions. A length heterogeneity PCR profile database of lactic acid bacteria isolated from the silage and identified by 16S rRNA gene sequencing was established. Although interoperonic 16S rRNA gene length polymorphisms were detected in some isolates, strain analysis showed that most of the lactic acid bacteria species thriving in silage could be discriminated by this method. The length heterogeneity PCR profiles of bacterial communities during maize fermentation were compared with those on a database. Under optimal fermentation conditions all the ecological indices of bacterial diversity, richness and evenness, deduced from community profiles, increased until day thirteen of fermentation and then decreased to the initial values. Pediococcus and Weissella dominated, especially in the first days of fermentation. Lactococcus lactis ssp. lactis and Lactobacillus brevis were mainly found after six days of fermentation. A peak corresponding to Lactobacillus plantarum was present in all the fermentation phases, but was only a minor fraction of the population. Unsuitable fermentation conditions and withered maize leaves in the presence of oxygen and water excess caused an enrichment of Enterococcus sp. and Enterobacter sp.  相似文献   
43.
DNA-sequence analyses of avian haemosporidian parasites, primarily of passerine birds, have described the phylogenetic relationships of major groups of these parasites, which are in general agreement with morphological taxonomy. However, less attention has been paid to haemosporidian parasites of non-passerine birds despite morphological and DNA-sequence evidence for unique clades of parasites in these birds. Detection of haemosporidian parasites in the Galapagos archipelago has raised conservation concerns and prompted us to characterise the origins and diversity of these parasites in the Galapagos dove (Zenaida galapagoensis). We used partial mitochondrial cytochrome b (cyt b) and apicoplast caseinolytic protease C (ClpC) genes to develop a phylogenetic hypothesis of relationships of haemosporidian parasites infecting New World Columbiformes, paying special attention to those parasites infecting the endemic Galapagos dove. We identified a well-supported and diverse monophyletic clade of haemosporidian parasites unique to Columbiformes, which belong to the sub-genus Haemoproteus (Haemoproteus). This is a sister clade to all the Haemoproteus (Parahaemoproteus) and Plasmodium parasites so far identified from birds as well as the Plasmodium parasites of mammals and reptiles. Our data suggest that the diverse Haemoproteus parasites observed in Galapagos doves are not endemic to the archipelago and likely represent multiple recent introductions.  相似文献   
44.
Hepatocellular carcinoma is a frequent and fatal disease. Recent researches on rodent models and human hepatocarcinogenesis contributed to unravel the molecular mechanisms of hepatocellular carcinoma dedifferentiation and progression, and allowed the discovery of several alterations underlying the deregulation of cell cycle and signalling pathways. This review provides an interpretive analysis of the results of these studies. Mounting evidence emphasises the role of up-regulation of RAS/ERK, PI3K/AKT, IKK/NF-kB, WNT, TGF-β, NOTCH, Hedgehog, and Hippo signalling pathways as well as of aberrant proteasomal activity in hepatocarcinogenesis. Signalling deregulation often occurs in preneoplastic stages of rodent and human hepatocarcinogenesis and progressively increases in carcinomas, being most pronounced in more aggressive tumours. Numerous changes in signalling cascades are involved in the deregulation of carbohydrate, lipid, and methionine metabolism, which play a role in the maintenance of the transformed phenotype. Recent studies on the role of microRNAs in signalling deregulation, and on the interplay between signalling pathways led to crucial achievements in the knowledge of the network of signalling cascades, essential for the development of adjuvant therapies of liver cancer. Furthermore, the analysis of the mechanisms involved in signalling deregulation allowed the identification of numerous putative prognostic markers and novel therapeutic targets of specific hepatocellular carcinoma subtypes associated with different biologic and clinical features. This is of prime importance for the selection of patient subgroups that are most likely to obtain clinical benefit and, hence, for successful development of targeted therapies for liver cancer.  相似文献   
45.
Augmented expression of protein kinase CK2 is associated with hyperproliferation and resistance to apoptosis in cancer cells. Effects of CK2 are at least partially linked to signaling via the Wnt/β-catenin pathway, which is dramatically enhanced in colon cancer. Cyclooxygenase-2 (COX-2), a Wnt/β-catenin target gene, has been associated with enhanced cancer progression and metastasis. However, the possibility that a connection may exist between CK2 and COX-2 has not been explored previously. Here we investigated changes in COX-2 expression and activity upon CK2 modulation and evaluated how these changes affected cell viability. COX-2 expression and cell viability decreased upon selective inhibition of COX-2 with SC-791 or CK2 with 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), both in human colon (HT29-ATCC, HT29-US, DLD-1) and breast (ZR-75) cancer cells, as well as in human embryonic kidney (HEK-293T) cells. On the other hand, ectopic CK2α expression promoted up-regulation of COX-2 by activating the Wnt/β-catenin pathway in HEK-293T cells. Noteworthy, over-expression of either CK2α, β-catenin or COX-2, as well as supplementation of the medium with prostaglandin E2 (PGE2), all were individually sufficient to overcome limitations in cell viability triggered by CK2 inhibition either upon addition of DMAT or over-expression of a dominant negative CK2α variant. Altogether, these findings provide new insight to the role of CK2 in cancer by up-regulating COX-2 expression and thereby PGE2 production.  相似文献   
46.
The double-stranded RNA sensor kinase PKR is one of four integrated stress response (ISR) sensor kinases that phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF2α) in response to stress. The current model of PKR activation considers the formation of back-to-back PKR dimers as a prerequisite for signal propagation. Here we show that PKR signaling involves the assembly of dynamic PKR clusters. PKR clustering is driven by ligand binding to PKR’s sensor domain and by front-to-front interfaces between PKR’s kinase domains. PKR clusters are discrete, heterogeneous, autonomous coalescences that share some protein components with processing bodies. Strikingly, eIF2α is not recruited to PKR clusters, and PKR cluster disruption enhances eIF2α phosphorylation. Together, these results support a model in which PKR clustering may limit encounters between PKR and eIF2α to buffer downstream signaling and prevent the ISR from misfiring.  相似文献   
47.
This study aimed to determine the effect of presence of the corpus luteum (CL) and its influence on cumulus–oocyte complexes (COCs) obtained from the ipsilateral or contralateral ovary in bovine on the recovery and capacity of the oocytes to sustain mono-spermic fertilization, undergo preimplantation development, and develop to the blastocyst stage. Ovaries were collected at a local slaughterhouse and kept in pairs corresponding to the same animal. In the first experiment the variables evaluated were compared between cows with (CCL+) and without (CCL-) CL, and for the second experiment, comparisons were made between ovaries with an ipsilateral (CL+), contralateral (CL), and no (NCL). The recovery rate of COCs was higher in ovaries from CCL cows, and a higher proportion of grade 1 COCs were recovered from this group. A higher proportion of metaphase I oocytes at 7 h of maturation, and a higher rate of cleavage were observed in the CCL+ group; however, a higher proportion of embryos were obtained from the CCL group. Besides, COCs from the CL+ group had a lower proportion of grades 1 and 2 morphological qualities, lower rate of metaphase II oocytes at 22 h of maturation, and lower rate of formation of two pronuclei, whereas a higher proportion of unfertilized oocytes after in vitro fertilization. On the other hand, the COCs from the CL group displayed a lower proportion of oocytes with more than two pronuclei, higher cleavage rate, and higher final blastocyst production were obtained when compared to CL+. Thus, the effects of CL on the competence of bovine COCs are different depending on the anatomical proximity of their location in the animal, negatively affecting the quality of COCs located in the same ovary, but not having negative effects on the competence of COCs in the ovaries contralateral to their location.  相似文献   
48.
49.
50.
Alzheimer’s disease (AD) is characterized by the appearance of amyloid‐β plaques, neurofibrillary tangles, and inflammation in brain regions involved in memory. Using mass spectrometry, we have quantified the phosphoproteome of the CK‐p25, 5XFAD, and Tau P301S mouse models of neurodegeneration. We identified a shared response involving Siglec‐F which was upregulated on a subset of reactive microglia. The human paralog Siglec‐8 was also upregulated on microglia in AD. Siglec‐F and Siglec‐8 were upregulated following microglial activation with interferon gamma (IFNγ) in BV‐2 cell line and human stem cell‐derived microglia models. Siglec‐F overexpression activates an endocytic and pyroptotic inflammatory response in BV‐2 cells, dependent on its sialic acid substrates and immunoreceptor tyrosine‐based inhibition motif (ITIM) phosphorylation sites. Related human Siglecs induced a similar response in BV‐2 cells. Collectively, our results point to an important role for mouse Siglec‐F and human Siglec‐8 in regulating microglial activation during neurodegeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号