首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3555篇
  免费   301篇
  国内免费   2篇
  3858篇
  2024年   8篇
  2023年   42篇
  2022年   91篇
  2021年   155篇
  2020年   93篇
  2019年   125篇
  2018年   128篇
  2017年   121篇
  2016年   180篇
  2015年   227篇
  2014年   232篇
  2013年   282篇
  2012年   309篇
  2011年   334篇
  2010年   194篇
  2009年   144篇
  2008年   189篇
  2007年   210篇
  2006年   154篇
  2005年   119篇
  2004年   131篇
  2003年   107篇
  2002年   90篇
  2001年   22篇
  2000年   12篇
  1999年   18篇
  1998年   19篇
  1997年   9篇
  1996年   18篇
  1995年   10篇
  1994年   7篇
  1993年   8篇
  1992年   15篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   7篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有3858条查询结果,搜索用时 15 毫秒
171.
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors.  相似文献   
172.
The tip-growing pollen tube is a useful model for studying polarized cell growth in plants. We previously characterized LePRK2, a pollen-specific receptor-like kinase from tomato (1). Here, we showed that LePRK2 is present as multiple phosphorylated isoforms in mature pollen membranes. Using comparative sequence analysis and phosphorylation site prediction programs, we identified two putative phosphorylation motifs in the cytoplasmic juxtamembrane (JM) domain. Site-directed mutagenesis in these motifs, followed by transient overexpression in tobacco pollen, showed that both motifs have opposite effects in regulating pollen tube length. Relative to LePRK2-eGFP pollen tubes, alanine substitutions in residues of motif I, Ser(277)/Ser(279)/Ser(282), resulted in longer pollen tubes, but alanine substitutions in motif II, Ser(304)/Ser(307)/Thr(308), resulted in shorter tubes. In contrast, phosphomimicking aspartic substitutions at these residues gave reciprocal results, that is, shorter tubes with mutations in motif I and longer tubes with mutations in motif II. We conclude that the length of pollen tubes can be negatively and positively regulated by phosphorylation of residues in motif I and II respectively. We also showed that LePRK2-eGFP significantly decreased pollen tube length and increased pollen tube tip width, relative to eGFP tubes. The kinase activity of LePRK2 was relevant for this phenotype because tubes that expressed a mutation in a lysine essential for kinase activity showed the same length and width as the eGFP control. Taken together, these results suggest that LePRK2 may have a central role in pollen tube growth through regulation of its own phosphorylation status.  相似文献   
173.
174.
175.
Many aspects of hedonic behavior, including self-administration of natural and drug rewards, as well as human positive affect, follow a diurnal cycle that peaks during the species-specific active period. This variation has been linked to circadian modulation of the mesolimbic dopamine system, and is hypothesized to serve an adaptive function by driving an organism to engage with the environment during times where the opportunity for obtaining rewards is high. However, relatively little is known about whether more complex facets of hedonic behavior – in particular, reward learning – follow the same diurnal cycle. The current study aimed to address this gap by examining evidence for diurnal variation in reward learning on a well-validated probabilistic reward learning task (PRT). PRT data from a large normative sample (= 516) of non-clinical individuals, recruited across eight studies, were examined for the current study. The PRT uses an asymmetrical reinforcement ratio to induce a behavioral response bias, and reward learning was operationalized as the strength of this response bias across blocks of the task. Results revealed significant diurnal variation in reward learning, however in contrast to patterns previously observed in other aspects of hedonic behavior, reward learning was lowest in the middle of the day. Although a diurnal pattern was also observed on a measure of more general task performance (discriminability), this did not account for the variation observed in reward learning. Taken together, these findings point to a distinct diurnal pattern in reward learning that differs from that observed in other aspects of hedonic behavior. The results of this study have important implications for our understanding of clinical disorders characterized by both circadian and reward learning disturbances, and future research is needed to confirm whether this diurnal variation has a truly circadian origin.  相似文献   
176.
A new therapeutic approach for inflammatory bowel diseases is based on the administration of probiotic bacteria. Prokaryotic DNA contains unmethylated CpG motifs which can activate immune responses, but it is unknown whether bacterial DNA is involved in the beneficial effects obtained by probiotic treatment. Peripheral blood mononuclear cells (PBMC) from healthy donors were incubated with pure DNA of eight probiotic strains and with total bacterial DNA from human feces collected before and after probiotic ingestion. Cytokine production was analyzed in culture supernatants. Modification of human microflora after probiotic administration was proven by polymerase chain reaction analysis. Here we show that Bifidobacterium genomic DNA induced secretion of the antiinflammatory interleukin-10 by PBMC. Total bacterial DNA from feces collected after probiotic administration modulated the immune response by a decrease of interleukin-1 beta and an increase of interleukin-10.  相似文献   
177.
178.
Osteomyelitis is an infectious disease located in the bone or bone marrow. Long-circulating and pH-sensitive liposomes containing a technetium-99m-labeled antibiotic, ceftizoxime, (SpHL-(99m)Tc-CF) were developed to identify osteomyelitis foci. Biodistribution studies and scintigraphic images of bone infection or non infection-bearing rats that had been treated with these liposomes were performed. A high accumulation in infectious foci and high values in the target-non target ratio could be observed. These results indicate the potential of SpHL-(99m)Tc-CF as a potential agent for the diagnosis of bone infections.  相似文献   
179.
Methoprene (a mimic of juvenile hormone) treatment can reduce the time required for sexual maturation in Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) males under laboratory conditions, supporting its use as a treatment for sterile males within the context of the sterile insect technique (SIT). We evaluated sexual behaviour, mating competitiveness of methoprene-treated males, and female readiness to mate after methoprene-treatment in field cages. The study involved two strains of A. fraterculus from Argentina and Peru, which show several polymorphisms in relation to their sexual behaviour. We also analyzed whether methoprene treatment affected male and/or female behaviour in the same way in these two strains. Methoprene-treated males were equally competitive with untreated mature males, and became sexually competitive 6 days after emergence (3–4 days earlier than untreated males). In contrast, methoprene did not induce sexual maturation in females or, at least, it did not induce a higher rate of mating in 7-day-old females. These results were observed both for the Argentina and the Peru strains. Altogether, our results indicate that methoprene treatment produces sexually competitive males in field cages. In the absence of a genetic sexing system, and when sterile males and females of A. fraterculus are released simultaneously, the fact that females do not respond as do males to the methoprene treatment acts as a physiological sexing effect. Therefore, in the presence of mainly sexually immature sterile females, released sexually mature sterile males would have to disperse in search of wild fertile females, thereby greatly reducing matings among the released sterile insects and thus enhancing sterile insect technique efficiency.  相似文献   
180.
Tissue transglutaminase (tTG) has been implicated in the pathogenesis of Parkinson disease (PD). However, exactly how tTG modulates the structural and functional properties of α-synuclein (α-syn) and contributes to the pathogenesis of PD remains unknown. Using site-directed mutagenesis combined with detailed biophysical and mass spectrometry analyses, we sought to identify the exact residues involved in tTG-catalyzed cross-linking of wild-type α-syn and α-syn mutants associated with PD. To better understand the structural consequences of each cross-linking reaction, we determined the effect of tTG-catalyzed cross-linking on the oligomerization, fibrillization, and membrane binding of α-syn in vitro. Our findings show that tTG-catalyzed cross-linking of monomeric α-syn involves multiple cross-links (specifically 2-3). We subjected tTG-catalyzed cross-linked monomeric α-syn composed of either wild-type or Gln → Asn mutants to sequential proteolysis by multiple enzymes and peptide mapping by mass spectrometry. Using this approach, we identified the glutamine and lysine residues involved in tTG-catalyzed intramolecular cross-linking of α-syn. These studies demonstrate for the first time that Gln79 and Gln109 serve as the primary tTG reactive sites. Mutating both residues to asparagine abolishes tTG-catalyzed cross-linking of α-syn and tTG-induced inhibition of α-syn fibrillization in vitro. To further elucidate the sequence and structural basis underlying these effects, we identified the lysine residues that form isopeptide bonds with Gln79 and Gln109. This study provides mechanistic insight into the sequence and structural basis of the inhibitory effects of tTG on α-syn fibrillogenesis in vivo, and it sheds light on the potential role of tTG cross-linking on modulating the physiological and pathogenic properties of α-syn.Parkinson disease (PD)2 is a progressive movement disorder that is caused by the loss of dopaminergic neurons in the substantia nigra, the part of the brain responsible for controlling movement. Clinically, PD is manifested in symptoms that include tremors, rigidity, and difficulty in initiating movement (bradykinesia). Pathologically, PD is characterized by the presence of intraneuronal, cytoplasmic inclusions known as Lewy bodies (LB), which are composed primarily of the protein “α-synuclein” (α-syn) (1) and are seen in the post-mortem brains of PD patients with the sporadic or familial forms of the disease (2). α-Syn is a presynaptic protein of 140 residues with a “natively” unfolded structure (3). Three missense point mutations in α-syn (A30P, E46K, and A53T) are associated with the early-onset, dominant, inherited form of PD (4, 5). Moreover, duplication or triplication of the α-syn gene has been linked to the familial form of PD, suggesting that an increase in α-syn expression is sufficient to cause PD. Together, these findings suggest that α-syn plays a central role in the pathogenesis of PD.The molecular and cellular determinants that govern α-syn oligomerization and fibrillogenesis in vivo remain poorly understood. In vitro aggregation studies have shown that the mutations associated with PD (A30P, E46K, and A53T) accelerate α-syn oligomerization, but only E46K and A53T α-syn show higher propensity to fibrillize than wild-type (WT) α-syn (6-8). This suggests that oligomerization, rather than fibrillization, is linked to early-onset familial PD (9). Our understanding of the molecular composition and biochemical state of α-syn in LBs has provided important clues about protein-protein interactions and post-translational modifications that may play a role in modulating oligomerization, fibrillogenesis, and LB formation of the protein. In addition to ubiquitination (10), phosphorylation (11, 12), nitration (13, 14), and C-terminal truncation (15, 16), analysis of post-mortem brain tissues from PD and Lewy bodies in dementia patients has confirmed the colocalization of tissue transglutaminase (tTG)-catalyzed cross-linked α-syn monomers and higher molecular aggregates in LBs within dopaminergic neurons (17, 18). Tissue transglutaminase catalyzes a calcium-dependent transamidating reaction involving glutamine and lysine residues, which results in the formation of a covalent cross-link via ε-(γ-glutamyl) lysine bonds (Fig. 2F). To date, seven different isoforms of tTGs have been reported, of which only tTG2 seems to be expressed in the human brain (19), whereas tTG1 and tTG3 are more abundantly found in stratified squamous epithelia (20). Subsequent immuno-histochemical, colocalization, and immunoprecipitation studies have shown that the levels of tTG and cross-linked α-syn species are increased in the substantia nigra of PD brains (17). These findings, combined with the known role of tTG in cross-linking and stabilizing bimolecular assemblies, led to the hypothesis that tTG plays an important role in the initiation and propagation of α-syn fibril formation and that it contributes to fibril stability in LBs. This hypothesis was initially supported by in vitro studies demonstrating that tTG catalyzes the polymerization of the α-syn-derived non-amyloid component (NAC) peptide via intermolecular covalent cross-linking of residues Gln79 and Lys80 (21) and by other studies suggesting that tTG promotes the fibrillization of amyloidogenic proteins implicated in the pathogenesis of other neurodegenerative diseases such as Alzheimer disease, supranuclear palsy, Huntington disease, and other polyglutamine diseases (22-24). However, recent in vitro studies with full-length α-syn have shown that tTG catalyzes intramolecular cross-linking of monomeric α-syn and inhibits, rather than promotes, its fibrillization in vitro (25, 26). The structural basis of this inhibitory effect and the exact residues involved in tTG-mediated cross-linking of α-syn, as well as structural and functional consequences of these modifications, remain poorly understood.Open in a separate windowFIGURE 2.tTG-catalyzed cross-linking of α-syn involves one to three intramolecular cross-links. A-C, MALDI-TOF/TOF analysis of native (—) and cross-linked (- - -) α-syn, showing that most tTG-catalyzed cross-linking products of WT or disease-associated mutant forms of α-syn are intramolecularly linked (predominant peak with two cross-links), and up to three intramolecular cross-links can occur (left shoulder). The abbreviations M and m/cl are used to designate native and cross-linked α-synuclein, respectively. D and E, kinetic analysis of α-syn (A30P) cross-linking monitored by MALDI-TOF and SDS-PAGE. F, schematic depiction of the tTG-catalyzed chemical reaction (isodipeptide formation) between glutamine and lysine residues.In this study, we have identified the primary glutamine and lysine residues involved in tTG-catalyzed, intramolecularly cross-linked monomeric α-syn and investigated how cross-linking these residues affects the oligomerization, fibrillization, and membrane binding of α-syn in vitro. Using single-site mutagenesis and mass spectrometry applied to exhaustive proteolytic digests of native and cross-linked monomeric α-syn, we identified Gln109 and Gln79 as the major tTG substrates. We demonstrate that the altered electrophoretic mobility of the intramolecularly cross-linked α-syn in SDS-PAGE occurs as a result of tTG-catalyzed cross-linking of Gln109 to lysine residues in the N terminus of α-syn, which leads to the formation of more compact monomers. Consistent with previous studies, we show that intramolecularly cross-linked α-syn forms off-pathway oligomers that are distinct from those formed by the wild-type protein and that do not convert to fibrils within the time scale of our experiments (3-5 days). We also show that membrane-bound α-syn is a substrate of tTG and that intramolecular cross-linking does not interfere with the ability of monomeric α-syn to adopt an α-helical conformation upon binding to synthetic membranes. These studies provide novel mechanistic insight into the sequence and structural basis of events that allow tTG to inhibit α-syn fibrillogenesis, and they shed light on the potential role of tTG-catalyzed cross-linking in modulating the physiological and pathogenic properties of α-syn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号