全文获取类型
收费全文 | 3555篇 |
免费 | 301篇 |
国内免费 | 2篇 |
专业分类
3858篇 |
出版年
2024年 | 8篇 |
2023年 | 42篇 |
2022年 | 91篇 |
2021年 | 155篇 |
2020年 | 93篇 |
2019年 | 125篇 |
2018年 | 128篇 |
2017年 | 121篇 |
2016年 | 180篇 |
2015年 | 227篇 |
2014年 | 232篇 |
2013年 | 282篇 |
2012年 | 309篇 |
2011年 | 334篇 |
2010年 | 194篇 |
2009年 | 144篇 |
2008年 | 189篇 |
2007年 | 210篇 |
2006年 | 154篇 |
2005年 | 119篇 |
2004年 | 131篇 |
2003年 | 107篇 |
2002年 | 90篇 |
2001年 | 22篇 |
2000年 | 12篇 |
1999年 | 18篇 |
1998年 | 19篇 |
1997年 | 9篇 |
1996年 | 18篇 |
1995年 | 10篇 |
1994年 | 7篇 |
1993年 | 8篇 |
1992年 | 15篇 |
1991年 | 8篇 |
1990年 | 5篇 |
1989年 | 6篇 |
1988年 | 5篇 |
1987年 | 5篇 |
1986年 | 7篇 |
1985年 | 6篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 3篇 |
1980年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1958年 | 1篇 |
1957年 | 1篇 |
排序方式: 共有3858条查询结果,搜索用时 15 毫秒
171.
Séverin S Pollitt AY Navarro-Nuñez L Nash CA Mourão-Sá D Eble JA Senis YA Watson SP 《The Journal of biological chemistry》2011,286(6):4107-4116
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors. 相似文献
172.
Salem T Mazzella A Barberini ML Wengier D Motillo V Parisi G Muschietti J 《The Journal of biological chemistry》2011,286(6):4882-4891
The tip-growing pollen tube is a useful model for studying polarized cell growth in plants. We previously characterized LePRK2, a pollen-specific receptor-like kinase from tomato (1). Here, we showed that LePRK2 is present as multiple phosphorylated isoforms in mature pollen membranes. Using comparative sequence analysis and phosphorylation site prediction programs, we identified two putative phosphorylation motifs in the cytoplasmic juxtamembrane (JM) domain. Site-directed mutagenesis in these motifs, followed by transient overexpression in tobacco pollen, showed that both motifs have opposite effects in regulating pollen tube length. Relative to LePRK2-eGFP pollen tubes, alanine substitutions in residues of motif I, Ser(277)/Ser(279)/Ser(282), resulted in longer pollen tubes, but alanine substitutions in motif II, Ser(304)/Ser(307)/Thr(308), resulted in shorter tubes. In contrast, phosphomimicking aspartic substitutions at these residues gave reciprocal results, that is, shorter tubes with mutations in motif I and longer tubes with mutations in motif II. We conclude that the length of pollen tubes can be negatively and positively regulated by phosphorylation of residues in motif I and II respectively. We also showed that LePRK2-eGFP significantly decreased pollen tube length and increased pollen tube tip width, relative to eGFP tubes. The kinase activity of LePRK2 was relevant for this phenotype because tubes that expressed a mutation in a lysine essential for kinase activity showed the same length and width as the eGFP control. Taken together, these results suggest that LePRK2 may have a central role in pollen tube growth through regulation of its own phosphorylation status. 相似文献
173.
174.
Guillermo Rodríguez‐Hernández Inés González‐Herrero Carolin Walter Sara González de Tena‐Dávila Salma Parvin Oskar Haas Wilhelm Woessmann Martin Stanulla Martin Schrappe Martin Dugas Yasodha Natkunam Alberto Orfao Verónica Domínguez Belén Pintado Oscar Blanco Diego Alonso‐López Javier De Las Rivas Alberto Martín‐Lorenzo Rafael Jiménez Francisco Javier García Criado María Begoña García Cenador Izidore S Lossos Carolina Vicente‐Dueñas Arndt Borkhardt Julia Hauer Isidro Sánchez‐García 《The EMBO journal》2018,37(14)
175.
Alexis E. Whitton Malavika Mehta Manon L. Ironside Greg Murray Diego A. Pizzagalli 《Chronobiology international》2018,35(8):1104-1114
Many aspects of hedonic behavior, including self-administration of natural and drug rewards, as well as human positive affect, follow a diurnal cycle that peaks during the species-specific active period. This variation has been linked to circadian modulation of the mesolimbic dopamine system, and is hypothesized to serve an adaptive function by driving an organism to engage with the environment during times where the opportunity for obtaining rewards is high. However, relatively little is known about whether more complex facets of hedonic behavior – in particular, reward learning – follow the same diurnal cycle. The current study aimed to address this gap by examining evidence for diurnal variation in reward learning on a well-validated probabilistic reward learning task (PRT). PRT data from a large normative sample (N = 516) of non-clinical individuals, recruited across eight studies, were examined for the current study. The PRT uses an asymmetrical reinforcement ratio to induce a behavioral response bias, and reward learning was operationalized as the strength of this response bias across blocks of the task. Results revealed significant diurnal variation in reward learning, however in contrast to patterns previously observed in other aspects of hedonic behavior, reward learning was lowest in the middle of the day. Although a diurnal pattern was also observed on a measure of more general task performance (discriminability), this did not account for the variation observed in reward learning. Taken together, these findings point to a distinct diurnal pattern in reward learning that differs from that observed in other aspects of hedonic behavior. The results of this study have important implications for our understanding of clinical disorders characterized by both circadian and reward learning disturbances, and future research is needed to confirm whether this diurnal variation has a truly circadian origin. 相似文献
176.
Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells 总被引:14,自引:0,他引:14
Lammers KM Brigidi P Vitali B Gionchetti P Rizzello F Caramelli E Matteuzzi D Campieri M 《FEMS immunology and medical microbiology》2003,38(2):165-172
A new therapeutic approach for inflammatory bowel diseases is based on the administration of probiotic bacteria. Prokaryotic DNA contains unmethylated CpG motifs which can activate immune responses, but it is unknown whether bacterial DNA is involved in the beneficial effects obtained by probiotic treatment. Peripheral blood mononuclear cells (PBMC) from healthy donors were incubated with pure DNA of eight probiotic strains and with total bacterial DNA from human feces collected before and after probiotic ingestion. Cytokine production was analyzed in culture supernatants. Modification of human microflora after probiotic administration was proven by polymerase chain reaction analysis. Here we show that Bifidobacterium genomic DNA induced secretion of the antiinflammatory interleukin-10 by PBMC. Total bacterial DNA from feces collected after probiotic administration modulated the immune response by a decrease of interleukin-1 beta and an increase of interleukin-10. 相似文献
177.
178.
Ferreira SM Domingos GP Ferreira Ddos S Rocha TG Serakides R de Faria Rezende CM Cardoso VN Fernandes SO Oliveira MC 《Bioorganic & medicinal chemistry letters》2012,22(14):4605-4608
Osteomyelitis is an infectious disease located in the bone or bone marrow. Long-circulating and pH-sensitive liposomes containing a technetium-99m-labeled antibiotic, ceftizoxime, (SpHL-(99m)Tc-CF) were developed to identify osteomyelitis foci. Biodistribution studies and scintigraphic images of bone infection or non infection-bearing rats that had been treated with these liposomes were performed. A high accumulation in infectious foci and high values in the target-non target ratio could be observed. These results indicate the potential of SpHL-(99m)Tc-CF as a potential agent for the diagnosis of bone infections. 相似文献
179.
Diego F. Segura Carlos Cáceres M. Teresa Vera Viwat Wornoayporn Amirul Islam Peter E.A. Teal Jorge L. Cladera Jorge Hendrichs & Alan S. Robinson 《Entomologia Experimentalis et Applicata》2009,131(1):75-84
Methoprene (a mimic of juvenile hormone) treatment can reduce the time required for sexual maturation in Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) males under laboratory conditions, supporting its use as a treatment for sterile males within the context of the sterile insect technique (SIT). We evaluated sexual behaviour, mating competitiveness of methoprene-treated males, and female readiness to mate after methoprene-treatment in field cages. The study involved two strains of A. fraterculus from Argentina and Peru, which show several polymorphisms in relation to their sexual behaviour. We also analyzed whether methoprene treatment affected male and/or female behaviour in the same way in these two strains. Methoprene-treated males were equally competitive with untreated mature males, and became sexually competitive 6 days after emergence (3–4 days earlier than untreated males). In contrast, methoprene did not induce sexual maturation in females or, at least, it did not induce a higher rate of mating in 7-day-old females. These results were observed both for the Argentina and the Peru strains. Altogether, our results indicate that methoprene treatment produces sexually competitive males in field cages. In the absence of a genetic sexing system, and when sterile males and females of A. fraterculus are released simultaneously, the fact that females do not respond as do males to the methoprene treatment acts as a physiological sexing effect. Therefore, in the presence of mainly sexually immature sterile females, released sexually mature sterile males would have to disperse in search of wild fertile females, thereby greatly reducing matings among the released sterile insects and thus enhancing sterile insect technique efficiency. 相似文献
180.
Adrien W. Schmid Diego Chiappe V��r��ne Pignat Valerie Grimminger Ivan Hang Marc Moniatte Hilal A. Lashuel 《The Journal of biological chemistry》2009,284(19):13128-13142
Tissue transglutaminase (tTG) has been implicated in the pathogenesis of
Parkinson disease (PD). However, exactly how tTG modulates the structural and
functional properties of α-synuclein (α-syn) and contributes to
the pathogenesis of PD remains unknown. Using site-directed mutagenesis
combined with detailed biophysical and mass spectrometry analyses, we sought
to identify the exact residues involved in tTG-catalyzed cross-linking of
wild-type α-syn and α-syn mutants associated with PD. To better
understand the structural consequences of each cross-linking reaction, we
determined the effect of tTG-catalyzed cross-linking on the oligomerization,
fibrillization, and membrane binding of α-syn in vitro. Our
findings show that tTG-catalyzed cross-linking of monomeric α-syn
involves multiple cross-links (specifically 2-3). We subjected tTG-catalyzed
cross-linked monomeric α-syn composed of either wild-type or Gln →
Asn mutants to sequential proteolysis by multiple enzymes and peptide mapping
by mass spectrometry. Using this approach, we identified the glutamine and
lysine residues involved in tTG-catalyzed intramolecular cross-linking of
α-syn. These studies demonstrate for the first time that
Gln79 and Gln109 serve as the primary tTG reactive
sites. Mutating both residues to asparagine abolishes tTG-catalyzed
cross-linking of α-syn and tTG-induced inhibition of α-syn
fibrillization in vitro. To further elucidate the sequence and
structural basis underlying these effects, we identified the lysine residues
that form isopeptide bonds with Gln79 and Gln109. This
study provides mechanistic insight into the sequence and structural basis of
the inhibitory effects of tTG on α-syn fibrillogenesis in vivo,
and it sheds light on the potential role of tTG cross-linking on modulating
the physiological and pathogenic properties of α-syn.Parkinson disease
(PD)2 is a progressive
movement disorder that is caused by the loss of dopaminergic neurons in the
substantia nigra, the part of the brain responsible for controlling movement.
Clinically, PD is manifested in symptoms that include tremors, rigidity, and
difficulty in initiating movement (bradykinesia). Pathologically, PD is
characterized by the presence of intraneuronal, cytoplasmic inclusions known
as Lewy bodies (LB), which are composed primarily of the protein
“α-synuclein” (α-syn)
(1) and are seen in the
post-mortem brains of PD patients with the sporadic or familial forms of the
disease (2). α-Syn is a
presynaptic protein of 140 residues with a “natively” unfolded
structure (3). Three missense
point mutations in α-syn (A30P, E46K, and A53T) are associated with the
early-onset, dominant, inherited form of PD
(4,
5). Moreover, duplication or
triplication of the α-syn gene has been linked to the familial
form of PD, suggesting that an increase in α-syn expression is
sufficient to cause PD. Together, these findings suggest that α-syn
plays a central role in the pathogenesis of PD.The molecular and cellular determinants that govern α-syn
oligomerization and fibrillogenesis in vivo remain poorly understood.
In vitro aggregation studies have shown that the mutations associated
with PD (A30P, E46K, and A53T) accelerate α-syn oligomerization, but
only E46K and A53T α-syn show higher propensity to fibrillize than
wild-type (WT) α-syn
(6-8).
This suggests that oligomerization, rather than fibrillization, is linked to
early-onset familial PD (9).
Our understanding of the molecular composition and biochemical state of
α-syn in LBs has provided important clues about protein-protein
interactions and post-translational modifications that may play a role in
modulating oligomerization, fibrillogenesis, and LB formation of the protein.
In addition to ubiquitination
(10), phosphorylation
(11,
12), nitration
(13,
14), and C-terminal truncation
(15,
16), analysis of post-mortem
brain tissues from PD and Lewy bodies in dementia patients has confirmed the
colocalization of tissue transglutaminase (tTG)-catalyzed cross-linked
α-syn monomers and higher molecular aggregates in LBs within
dopaminergic neurons (17,
18). Tissue transglutaminase
catalyzes a calcium-dependent transamidating reaction involving glutamine and
lysine residues, which results in the formation of a covalent cross-link via
ε-(γ-glutamyl) lysine bonds
(Fig. 2F). To date,
seven different isoforms of tTGs have been reported, of which only tTG2 seems
to be expressed in the human brain
(19), whereas tTG1 and tTG3
are more abundantly found in stratified squamous epithelia
(20). Subsequent
immuno-histochemical, colocalization, and immunoprecipitation studies have
shown that the levels of tTG and cross-linked α-syn species are
increased in the substantia nigra of PD brains
(17). These findings, combined
with the known role of tTG in cross-linking and stabilizing bimolecular
assemblies, led to the hypothesis that tTG plays an important role in the
initiation and propagation of α-syn fibril formation and that it
contributes to fibril stability in LBs. This hypothesis was initially
supported by in vitro studies demonstrating that tTG catalyzes the
polymerization of the α-syn-derived non-amyloid component (NAC) peptide
via intermolecular covalent cross-linking of residues Gln79 and
Lys80 (21) and by
other studies suggesting that tTG promotes the fibrillization of amyloidogenic
proteins implicated in the pathogenesis of other neurodegenerative diseases
such as Alzheimer disease, supranuclear palsy, Huntington disease, and other
polyglutamine diseases
(22-24).
However, recent in vitro studies with full-length α-syn have
shown that tTG catalyzes intramolecular cross-linking of monomeric α-syn
and inhibits, rather than promotes, its fibrillization in vitro
(25,
26). The structural basis of
this inhibitory effect and the exact residues involved in tTG-mediated
cross-linking of α-syn, as well as structural and functional
consequences of these modifications, remain poorly understood.Open in a separate windowFIGURE 2.tTG-catalyzed cross-linking of α-syn involves one to three
intramolecular cross-links. A-C, MALDI-TOF/TOF analysis of native
(—) and cross-linked (- - -) α-syn, showing that most
tTG-catalyzed cross-linking products of WT or disease-associated mutant forms
of α-syn are intramolecularly linked (predominant peak with two
cross-links), and up to three intramolecular cross-links can occur (left
shoulder). The abbreviations M and m/cl are
used to designate native and cross-linked α-synuclein, respectively.
D and E, kinetic analysis of α-syn (A30P)
cross-linking monitored by MALDI-TOF and SDS-PAGE. F, schematic
depiction of the tTG-catalyzed chemical reaction (isodipeptide formation)
between glutamine and lysine residues.In this study, we have identified the primary glutamine and lysine residues
involved in tTG-catalyzed, intramolecularly cross-linked monomeric α-syn
and investigated how cross-linking these residues affects the oligomerization,
fibrillization, and membrane binding of α-syn in vitro. Using
single-site mutagenesis and mass spectrometry applied to exhaustive
proteolytic digests of native and cross-linked monomeric α-syn, we
identified Gln109 and Gln79 as the major tTG substrates.
We demonstrate that the altered electrophoretic mobility of the
intramolecularly cross-linked α-syn in SDS-PAGE occurs as a result of
tTG-catalyzed cross-linking of Gln109 to lysine residues in the N
terminus of α-syn, which leads to the formation of more compact
monomers. Consistent with previous studies, we show that intramolecularly
cross-linked α-syn forms off-pathway oligomers that are distinct from
those formed by the wild-type protein and that do not convert to fibrils
within the time scale of our experiments (3-5 days). We also show that
membrane-bound α-syn is a substrate of tTG and that intramolecular
cross-linking does not interfere with the ability of monomeric α-syn to
adopt an α-helical conformation upon binding to synthetic membranes.
These studies provide novel mechanistic insight into the sequence and
structural basis of events that allow tTG to inhibit α-syn
fibrillogenesis, and they shed light on the potential role of tTG-catalyzed
cross-linking in modulating the physiological and pathogenic properties of
α-syn. 相似文献