首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11023篇
  免费   983篇
  国内免费   71篇
  12077篇
  2024年   17篇
  2023年   100篇
  2022年   191篇
  2021年   360篇
  2020年   232篇
  2019年   319篇
  2018年   340篇
  2017年   335篇
  2016年   440篇
  2015年   666篇
  2014年   673篇
  2013年   832篇
  2012年   968篇
  2011年   935篇
  2010年   622篇
  2009年   506篇
  2008年   635篇
  2007年   596篇
  2006年   504篇
  2005年   435篇
  2004年   454篇
  2003年   346篇
  2002年   332篇
  2001年   103篇
  2000年   82篇
  1999年   83篇
  1998年   73篇
  1997年   65篇
  1996年   60篇
  1995年   49篇
  1994年   47篇
  1993年   51篇
  1992年   55篇
  1991年   50篇
  1990年   46篇
  1989年   43篇
  1988年   28篇
  1987年   28篇
  1986年   26篇
  1985年   33篇
  1984年   34篇
  1983年   23篇
  1982年   34篇
  1981年   18篇
  1980年   17篇
  1979年   19篇
  1978年   13篇
  1977年   16篇
  1975年   14篇
  1967年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
White rot fungi efficiently degrade lignin, a complex aromatic polymer in wood that is among the most abundant natural materials on earth. These fungi use extracellular oxidative enzymes that are also able to transform related aromatic compounds found in explosive contaminants, pesticides and toxic waste. We have sequenced the 30-million base-pair genome of Phanerochaete chrysosporium strain RP78 using a whole genome shotgun approach. The P. chrysosporium genome reveals an impressive array of genes encoding secreted oxidases, peroxidases and hydrolytic enzymes that cooperate in wood decay. Analysis of the genome data will enhance our understanding of lignocellulose degradation, a pivotal process in the global carbon cycle, and provide a framework for further development of bioprocesses for biomass utilization, organopollutant degradation and fiber bleaching. This genome provides a high quality draft sequence of a basidiomycete, a major fungal phylum that includes important plant and animal pathogens.  相似文献   
973.
974.
We investigated the influence of environments with different average temperatures and different salinities on plasma NEFA in elasmobranchs by comparing species from tropical vs. cold temperate marine waters, and tropical freshwater vs. tropical marine waters. The influence of the environment on plasma NEFA is significant, especially with regard to essential fatty acids (EFA) and the n-3/n-6 ratio. n-3/n-6 ratios in tropical marine elasmobranchs were lower by two-fold or more compared with temperate marine elasmobranchs, because of higher levels of arachidonic acid (AA, 20:4n-6) and docosatetraenoic acid (22:4n-6), and less docosahexaenoic acid (DHA, 22:6n-3), in the tropical species. These results are similar to those in earlier studies on lipids in teleosts. n-3/n-6 ratios and levels of EFA were similar between tropical freshwater and tropical marine elasmobranchs. This suggests that the observation in temperate waters that marine fishes have higher levels of n-3 fatty acids and n-3/n-6 ratios than freshwater fishes may not hold true in tropical waters, at least in elasmobranchs. It also suggests that plasma NEFA are little affected by freshwater vs. seawater adaptation in elasmobranchs. Likewise, we found that plasma NEFA composition and levels were not markedly affected by salinity acclimation (2 weeks) in the euryhaline stingray Himantura signifer. However, in contrast to our comparisons of freshwater-adapted vs. marine species, the level of n-3 fatty acids and the n-3/n-6 ratio were observed to significantly decrease, indicating a potential role of n-3 fatty acids in salinity acclimation in H. signifer.  相似文献   
975.
The immobilization of phospholipase D produced by Streptomyces sp. YU100 was evaluated to see it would be practical for industrial applications. To accomplish this, the purified enzyme, which contained 53 unit/mg of protein, was subjected to immobilization on various matrices. When immobilization supports including calcium alginate gel, polyacrylamide gel, and macroporous resin were evaluated, the highest enzyme retention ratio (> 42%) was observed on a Dowex MSA-2 macro-porous resin. This may have occurred as a result of the ability of the hydrophobic domain of phospholipase D to interact with the polystyrene backbone of the resin, as well as the ability of the dimethylethanolamine group of the MSA-2 resin to retain the enzyme by forming hydrogen bonds with the acidic residues of the enzyme. Upon the operation of a reactor packed with enzyme that had been immobilized on a Dowex MSA-2 resin, greater than 80% of the initial enzyme activity was retained for 16 days. During the reaction, phosphatidylcholine became bound to the immobilized resin and interfered with the enzyme reaction, therefore, the resin was washed with ethyl ether every 2 h. A process for recovering excessive l-serine from phospholipids using the Dowex MR-3 resin was designed, and the separated l -serine was employed again after replacing the amount that was used.  相似文献   
976.
Increasing environmental pollution in urban areas has been endangering the survival of carbonate stones in monuments and statuary for many decades. Numerous conservation treatments have been applied for the protection and consolidation of these works of art. Most of them, however, either release dangerous gases during curing or show very little efficacy. Bacterially induced carbonate mineralization has been proposed as a novel and environmentally friendly strategy for the conservation of deteriorated ornamental stone. However, the method appeared to display insufficient consolidation and plugging of pores. Here we report that Myxococcus xanthus-induced calcium carbonate precipitation efficiently protects and consolidates porous ornamental limestone. The newly formed carbonate cements calcite grains by depositing on the walls of the pores without plugging them. Sonication tests demonstrate that these new carbonate crystals are strongly attached to the substratum, mostly due to epitaxial growth on preexisting calcite grains. The new crystals are more stress resistant than the calcite grains of the original stone because they are organic-inorganic composites. Variations in the phosphate concentrations of the culture medium lead to changes in local pH and bacterial productivity. These affect the structure of the new cement and the type of precipitated CaCO3 polymorph (vaterite or calcite). The manipulation of culture medium composition creates new ways of controlling bacterial biomineralization that in the future could be applied to the conservation of ornamental stone.  相似文献   
977.
An autolysis chitinase was purified from the cultural medium of the anaerobic fungus Piromyces communis OTS1 by ammonium sulfate precipitation, affinity chromatography with regenerated chitin, chromato-focusing, gel filtration, and chromato-focusing again. The optimal pH and temperature were 6.0 and 50°C, respectively, for a 20-min assay. The chitinase was stable from pH 6.0 to 8.0, but was unstable at 70°C for 20 min. The molecular mass of chitinase was estimated by SDS-PAGE to be 44.9 kDa, and its pI was 4.4. The enzyme activity, which was of the ‘endo’ type, was inhibited by Hg2+ and allosamidin. The chitinase hydrolyzes chitin powder and fungal cell walls at a higher rate than an artificial chitin substrate. It can be concluded that extracellular chitinase is similar to cytosolic chitinase, but they are not the same protein. Received: 3 December 1996 / Accepted: 28 January 1997  相似文献   
978.
979.
Intermittent fasting (IF) has recently gained popularity, and has been used for centuries in many religious practices. The Ramadan fasting is a mandatory form of IF practiced by millions of healthy adult Muslims globally for a whole lunar month every year. In Islam, the “Sunna” also encourages Muslims to practice IF all along the year (e.g.; two days a week). The 2019-Coronavirus disease (COVID-19) pandemic in the context of Ramadan has raised the question whether fasting is safe practice during the COVID-19 pandemic health crisis, and what would be the healthy lifestyle behaviors while fasting that would minimize the risk of infection. As COVID-19 lacks a specific therapy, IF and physical activity could help promote human immunity and be part of holistic preventive strategy against COVID-19. In this commentary, the authors focus on this dilemma and provide recommendations to the fasting communities for safely practicing physical activity in time of COVID-19 pandemic.  相似文献   
980.

Background

Plasmodium falciparum malaria is one of the most widespread parasitic infections in humans and remains a leading global health concern. Malaria elimination efforts are threatened by the emergence and spread of resistance to artemisinin-based combination therapy, the first-line treatment of malaria. Promising molecular markers and pathways associated with artemisinin drug resistance have been identified, but the underlying molecular mechanisms of resistance remains unknown. The genomic data from early period of emergence of artemisinin resistance (2008–2011) was evaluated, with aim to define k13 associated genetic background in Cambodia, the country identified as epicentre of anti-malarial drug resistance, through characterization of 167 parasite isolates using a panel of 21,257 SNPs.

Results

Eight subpopulations were identified suggesting a process of acquisition of artemisinin resistance consistent with an emergence-selection-diffusion model, supported by the shifting balance theory. Identification of population specific mutations facilitated the characterization of a core set of 57 background genes associated with artemisinin resistance and associated pathways. The analysis indicates that the background of artemisinin resistance was not acquired after drug pressure, rather is the result of fixation followed by selection on the daughter subpopulations derived from the ancestral population.

Conclusions

Functional analysis of artemisinin resistance subpopulations illustrates the strong interplay between ubiquitination and cell division or differentiation in artemisinin resistant parasites. The relationship of these pathways with the P. falciparum resistant subpopulation and presence of drug resistance markers in addition to k13, highlights the major role of admixed parasite population in the diffusion of artemisinin resistant background. The diffusion of resistant genes in the Cambodian admixed population after selection resulted from mating of gametocytes of sensitive and resistant parasite populations.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号