首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8958篇
  免费   888篇
  国内免费   2篇
  9848篇
  2024年   13篇
  2023年   84篇
  2022年   172篇
  2021年   289篇
  2020年   204篇
  2019年   257篇
  2018年   354篇
  2017年   326篇
  2016年   410篇
  2015年   547篇
  2014年   539篇
  2013年   779篇
  2012年   782篇
  2011年   774篇
  2010年   555篇
  2009年   418篇
  2008年   418篇
  2007年   389篇
  2006年   333篇
  2005年   264篇
  2004年   265篇
  2003年   234篇
  2002年   214篇
  2001年   131篇
  2000年   95篇
  1999年   89篇
  1998年   66篇
  1997年   43篇
  1996年   45篇
  1995年   48篇
  1994年   40篇
  1993年   39篇
  1992年   67篇
  1991年   54篇
  1990年   44篇
  1989年   44篇
  1988年   41篇
  1987年   35篇
  1986年   59篇
  1985年   34篇
  1984年   29篇
  1983年   18篇
  1982年   17篇
  1981年   11篇
  1980年   12篇
  1979年   12篇
  1978年   22篇
  1977年   10篇
  1974年   13篇
  1973年   28篇
排序方式: 共有9848条查询结果,搜索用时 15 毫秒
81.
Advanced glycation end-products (AGEs) trigger multiple metabolic disorders in the vessel wall that may in turn lead to endothelial dysfunction. The molecular mechanisms by which AGEs generate these effects are not completely understood. Oxidative stress plays a key role in the development of deleterious effects that occur in endothelium during diabetes. Our main objectives were to further understand how AGEs contribute to reactive oxygen species (ROS) overproduction in endothelial cells and to evaluate the protective effect of an antioxidant plant extract. The human endothelial cell line EA.hy926 was treated with native or modified bovine serum albumin (respectively BSA and BSA-AGEs). To monitor free radicals formation, we used H2DCF-DA, dihydroethidium (DHE), DAF-FM-DA and MitoSOX Red dyes. To investigate potential sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial inhibitors were used. The regulation of different types of ROS by the polyphenol-rich extract from the medicinal plant Doratoxylon apetalum was also studied for a therapeutic perspective. BSA-AGEs exhibited not only less antioxidant properties than BSA, but also pro-oxidant effects. The degree of albumin glycoxidation directly influenced oxidative stress through a possible communication between NADPH oxidase and mitochondria. D. apetalum significantly decreased intracellular hydrogen peroxide and superoxide anions mainly detected by H2DCF-DA and DHE respectively. Our results suggest that BSA-AGEs promote a marked oxidative stress mediated at least by NADPH oxidase and mitochondria. D. apetalum plant extract appeared to be an effective antioxidant compound to protect endothelial cells.  相似文献   
82.
Staphylococcal protein A (SPA)-based vectors were constructed to direct secretion of the E1alpha and E1beta subunits of Pisum sativum mitochondrial pyruvate dehydrogenase from Bacillus subtilis. These proteins were not exported when the signal peptide from levansucrase (SacBSP) was fused to their N-termini. Both SacBSP-E1alpha and SacBSP-E1beta fusion proteins were insoluble in the cytoplasm. However, when the SPA open-reading frame was inserted between SacBSP and E1alpha or E1beta, corresponding fusion proteins were secreted from the cells. The first (E) IgG-binding domain of SPA was sufficient to direct low level secretion of both fusion proteins (SacBSP-E-E1alpha and SacBSP-E-E1beta). Adding the second (D) IgG-binding domain improved extracellular protein yields 3- to 4-fold over E alone, but was not as efficient as secretion of the full-length (EDABC) SPA-fusion proteins. All constructs were based on the pUB110-derived multicopy plasmid pWB705. Separate B. subtilis strains transformed with SacBSP-E-E1alpha-His(6) or SacBSP-E1beta were cocultivated in the presence of Ni-NTA agarose. The native pyruvate dehydrogenase alpha2beta2 structure was bound to the affinity matrix, demonstrating assembly after secretion. The use of SPA as a fusion partner during expression of heterologous proteins by B. subtilis provides the basis of a versatile system that can be used to study both secretion and protein:protein interactions.  相似文献   
83.
In this work we compared the efficiency of a laccase treatment performed on steam-exploded wheat straw pretreated under soft conditions (water impregnation) or harsh conditions (impregnation with diluted acid). The effect of several enzymatic treatment parameters (pH, time of incubation, laccase origin and loading) was analysed. The results obtained indicated that severity conditions applied during steam explosion have an influence on the efficiency of detoxification. A reduction of the toxic effect of phenolic compounds by laccase polymerization of free phenols was demonstrated. Laccase treatment of steam-exploded wheat straw reduced sugar recovery after enzymatic hydrolysis, and it should be better performed after hydrolysis with cellulases. The fermentability of hydrolysates was greatly improved by the laccase treatment in all the samples. Our results demonstrate the action of phenolic compounds as fermentation inhibitors, and the advantages of a laccase treatment to increase the ethanol production from steam-exploded wheat straw.  相似文献   
84.
85.
86.
Hepatocellular carcinoma is a frequent and fatal disease. Recent researches on rodent models and human hepatocarcinogenesis contributed to unravel the molecular mechanisms of hepatocellular carcinoma dedifferentiation and progression, and allowed the discovery of several alterations underlying the deregulation of cell cycle and signalling pathways. This review provides an interpretive analysis of the results of these studies. Mounting evidence emphasises the role of up-regulation of RAS/ERK, PI3K/AKT, IKK/NF-kB, WNT, TGF-β, NOTCH, Hedgehog, and Hippo signalling pathways as well as of aberrant proteasomal activity in hepatocarcinogenesis. Signalling deregulation often occurs in preneoplastic stages of rodent and human hepatocarcinogenesis and progressively increases in carcinomas, being most pronounced in more aggressive tumours. Numerous changes in signalling cascades are involved in the deregulation of carbohydrate, lipid, and methionine metabolism, which play a role in the maintenance of the transformed phenotype. Recent studies on the role of microRNAs in signalling deregulation, and on the interplay between signalling pathways led to crucial achievements in the knowledge of the network of signalling cascades, essential for the development of adjuvant therapies of liver cancer. Furthermore, the analysis of the mechanisms involved in signalling deregulation allowed the identification of numerous putative prognostic markers and novel therapeutic targets of specific hepatocellular carcinoma subtypes associated with different biologic and clinical features. This is of prime importance for the selection of patient subgroups that are most likely to obtain clinical benefit and, hence, for successful development of targeted therapies for liver cancer.  相似文献   
87.
When the freshwater microalga Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense were deployed as free suspensions in unsterile, municipal wastewater for tertiary wastewater treatment, their population was significantly lower compared with their populations in sterile wastewater. At the same time, the numbers of natural microfauna and wastewater bacteria increased. Immobilization of C. sorokiniana and A. brasilense in small (2–4 mm in diameter), polymer Ca-alginate beads significantly enhanced their populations when these beads were suspended in normal wastewater. All microbial populations within and on the surface of the beads were evaluated by quantitative fluorescence in situ hybridization combined with scanning electron microscopy and direct measurements. Submerging immobilizing beads in wastewater created the following sequence of events: (a) a biofilm composed of wastewater bacteria and A. brasilense was created on the surface of the beads, (b) the bead inhibited penetration of outside organisms into the beads, (c) the bead inhibited liberation of the immobilized microorganisms into the wastewater, and (d) permitted an uninterrupted reduction of ammonium and phosphorus from the wastewater. This study demonstrated that wastewater microbial populations are responsible for decreasing populations of biological agents used for wastewater treatment and immobilization in alginate beads provided a protective environment for these agents to carry out uninterrupted tertiary wastewater treatment.  相似文献   
88.
89.
The location of major quantitative trait loci (QTL) contributing to stem and leaf [Na+] and [K+] was previously reported in chromosome 7 using two connected populations of recombinant inbred lines (RILs) of tomato. HKT1;1 and HKT1;2, two tomato Na+‐selective class I‐HKT transporters, were found to be closely linked, where the maximum logarithm of odds (LOD) score for these QTLs located. When a chromosome 7 linkage map based on 278 single‐nucleotide polymorphisms (SNPs) was used, the maximum LOD score position was only 35 kb from HKT1;1 and HKT1;2. Their expression patterns and phenotypic effects were further investigated in two near‐isogenic lines (NILs): 157‐14 (double homozygote for the cheesmaniae alleles) and 157‐17 (double homozygote for the lycopersicum alleles). The expression pattern for the HKT1;1 and HKT1;2 alleles was complex, possibly because of differences in their promoter sequences. High salinity had very little effect on root dry and fresh weight and consequently on the plant dry weight of NIL 157‐14 in comparison with 157‐17. A significant difference between NILs was also found for [K+] and the [Na+]/[K+] ratio in leaf and stem but not for [Na+] arising a disagreement with the corresponding RIL population. Their association with leaf [Na+] and salt tolerance in tomato is also discussed.  相似文献   
90.
Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-Ga3PDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg(2+) or Mn(2+) (being Ca(2+) independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRK1 subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRK1s from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia oleracea] leaves, SnRK1) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRK1 present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号