首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   11篇
  139篇
  2023年   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   10篇
  2016年   7篇
  2015年   9篇
  2014年   6篇
  2013年   9篇
  2012年   11篇
  2011年   9篇
  2010年   10篇
  2009年   13篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
131.
Plants growing in dense vegetations compete with their neighbors for resources such as water, nutrients and light. The competition for light has been particularly well studied, both for its fitness consequences as well as the adaptive behaviors that plants display to win the battle for light interception. Aboveground, plants detect their competitors through photosensory cues, notably the red:far-red light ratio (R:FR). The R:FR is a very reliable indicator of future competition as it decreases in a plant-specific manner through red light absorption for photosynthesis and is sensed with the phytochrome photoreceptors. In addition, also blue light depletion is perceived for neighbor detection. As a response to these light signals plants display a suite of phenotypic traits defined as the shade avoidance syndrome (SAS). The SAS helps to position the photosynthesizing leaves in the higher zones of a canopy where light conditions are more favorable. In this review we will discuss the physiological control mechanisms through which the photosensory signals are transduced into the adaptive phenotypic responses that make up the SAS. Using this mechanistic knowledge as a starting point, we will discuss how the SAS functions in the context of the complex multi-facetted environments, which plants usually grow in.Key words: competition, shade avoidance, hormones, cell wall, adaptive plasticity, photoreceptor, light  相似文献   
132.
The symbiosis between plant roots and arbuscular mycorrhizal (AM) fungi has been shown to affect both the diversity and productivity of agricultural communities. In this study, we characterized the AM fungal communities of Solanum tuberosum L. (potato) roots and of the bulk soil in two nearby areas of northern Italy, in order to verify if land use practices had selected any particular AM fungus with specificity to potato plants. The AM fungal large-subunit (LSU) rRNA genes were subjected to nested PCR, cloning, sequencing, and phylogenetic analyses. One hundred eighty-three LSU rRNA sequences were analyzed, and eight monophyletic ribotypes, belonging to Glomus groups A and B, were identified. AM fungal communities differed between bulk soil and potato roots, as one AM fungal ribotype, corresponding to Glomus intraradices, was much more frequent in potato roots than in soils (accounting for more than 90% of sequences from potato samples and less than 10% of sequences from soil samples). A semiquantitative heminested PCR with specific primers was used to confirm and quantify the AM fungal abundance observed by cloning. Overall results concerning the biodiversity of AM fungal communities in roots and in bulk soils from the two studied areas suggested that potato roots were preferentially colonized by one AM fungal species, G. intraradices.  相似文献   
133.
134.
Bacterial meningitis is a severe and deadly disease, most commonly caused by Streptococcus pneumoniae. Disease outcome has been related to severity of the inflammatory response in the subarachnoid space. Inflammasomes are intracellular signaling complexes contributing to this inflammatory response. The role of genetic variation in inflammasome genes in bacterial meningitis is largely unknown. In a prospective nationwide cohort of patients with pneumococcal meningitis, we performed a genetic association study and found that single-nucleotide polymorphisms in the inflammasome genes CARD8 (rs2043211) and NLRP1 (rs11621270) are associated with poor disease outcome. Levels of the inflammasome associated cytokines interleukin (IL)-1β and IL-18 in cerebrospinal fluid also correlated with clinical outcome, but were not associated with the CARD8 and NLRP1 polymorphisms. Our results implicate an important role of genetic variation in inflammasome genes in the regulation of inflammatory response and clinical outcome in patients with bacterial meningitis.  相似文献   
135.
136.
The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity.  相似文献   
137.
Long-term time-series of the eutrophic Dutch lakes Veluwemeer and Wolderwijd were subject to ordination and clustering by means of non-supervised artificial neural networks (ANN). A combination of bottom-up and top-down eutrophication control measures has been implemented in both lakes since 1979. Dividing time-series data from 1976 to 1993 into three distinctive management periods has facilitated a comparative analysis of the two lakes regarding both the seasonal and long-term dynamics in response to eutrophication control. Results of the study have demonstrated that non-supervised ANN are an alternative technique: (1) to elucidate causal relationships of complex ecological processes, and (2) to reveal long-term behaviours of ecosystems in response to different management approaches. It has been shown that external nutrient control combined with food web manipulation have turned both lakes from nitrogen to phosphorus limitation, and from blue-green algae to diatom and green algae dominance.  相似文献   
138.
Cyclic nucleotide phosphodiesterase has been partially purified by calmodulin-Sepharose affinity chromatography from a soluble extract of Neurospora crassa. The phosphodiesterase activity remained bound to the affinity column even in the presence of 6 M urea and could only be eluted by calcium chelation. The enzyme exhibits cAMP and cGMP phosphodiesterase activities. Both activities can be enhanced by calmodulin in a Ca2+-dependent manner. Stimulation of cyclic nucleotide phosphodiesterase by calmodulin can be inhibited by calmodulin antagonists such as pimozide, trifluoperazine and chlorpromazine.  相似文献   
139.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号