A member of the Alu family of repeated DNA elements has been identified on
the long arm of the human Y chromosome, Yq11. This element, referred to as
the Y Alu polymorphic (YAP) element, is present at a specific site on the Y
chromosome in some humans and is absent in others. Phylogenetic comparisons
with other Alu sequences reveal that the YAP element is a member of the
polymorphic subfamily-3 (PSF-3), a previously undefined subfamily of Alu
elements. The evolutionary relationships of PSF-3 to other Alu subfamilies
support the hypothesis that recently inserted elements result from multiple
source genes. The frequency of the YAP element is described in 340
individuals from 14 populations, and the data are combined with those from
other populations. There is both significant heterogeneity among
populations and a clear pattern in the frequencies of the insertion:
sub-Saharan Africans have the highest frequencies, followed by northern
Africans, Europeans, Oceanians, and Asians. An interesting exception is the
relatively high frequency of the YAP element in Japanese. The greatest
genetic distance is observed between the African and non-African
populations. The YAP is especially useful for studying human population
history from the perspective of male lineages.
相似文献
The placenta is an important site for iron metabolism in humans. It transfers iron from the mother to the fetus. One of the major iron transport proteins is transferrin, which is a blood plasma protein crucial for iron uptake. Its localization and expression may be one of the markers to distinguish placental dysfunction.
Methods
In the experimental study we used antibody preparation, mass spectrometric analysis, biochemical and immunocytochemical methods for characterization of transferrin expression on the human choriocarcinoma cell line JAR (JAR cells), placental lysates, and cryostat sections. Newly designed monoclonal antibody TRO-tf-01 to human transferrin was applied on human placentae from normal (n = 3) and abnormal (n = 9) pregnancies.
Results
Variations of transferrin expression were detected in villous syncytiotrophoblast, which is in direct contact with maternal blood. In placentae from normal pregnancies, the expression of transferrin in the syncytium was significantly lower (p < 0.001) when compared to placentae from abnormal ones (gestational diabetes, pregnancy induced hypertension, drug abuse).
Conclusion
These observations suggest that in the case of abnormal pregnancies, the fetus may require higher levels of transferrin in order to prevent iron depletion due to the stress from the placental dysfunction. 相似文献
We examined the effects of two drugs, AH5183 and cetiedil, demonstrated to be potent inhibitors of acetylcholine (ACh) transport by isolated synaptic vesicles on cholinergic functions in Torpedo synaptosomes. AH5183 exhibited a high specificity toward vesicular ACh transport, whereas cetiedil was shown to inhibit both high-affinity choline uptake and vesicular ACh transport. Choline acetyltransferase was not affected by either drug. High external choline concentrations permitted us to overcome cetiedil inhibition of high-affinity choline transport, and thus synthesis of [14C]ACh in treated preparations was similar to that in controls. We then tested evoked ACh release in drug-treated synaptosomes under conditions where ACh translocation into the vesicles was blocked. We observed that ACh release was impaired only in cetiedil-treated preparations; synaptosomes treated with AH5183 behaved like the controls. Thus, this comparative study on isolated nerve endings allowed us to dissociate two steps in drug action: upstream, where both AH5183 and cetiedil are efficient blockers of the vesicular ACh translocation, and downstream, where only cetiedil is able to block the ACh release process. 相似文献
Gangliosides were isolated from four subcellular fractions of the electric organ ofTorpedo marmorata: synaptosomes, presynaptic membranes, postsynaptic membranes, and synaptic vesicle membranes. This exploited a principal advantage offered by this tissue: facile separation of pre-and postyynaptic elements. Total ganglioside concentration in presynaptic membranes was approximately twice that of synaptosomes and 15 times that of postsynaptic membranes (47.7, 24.4, and 3.21 g of lipid sialic acid per mg protein, respectively). Synaptic vesicle membranes had the highest overall concentration (78.9) relative to protein, but a concentration approximately comparable to that of presynaptic membranes when expressed relative to phospholipid. The thin-layer patterns of these two fractions were similar, both in terms of total pattern and the specific pattern of gangliotetraose structures as revealed by overlay with cholera toxin B subunit; these were notable for the paucity of monosialo structures and the virtual absence of GM1. Postsynaptic membranes, on the other hand, had a significantly higher content of monosialogangliosides including the presence of GM1. The synaptosomal pattern resembled that of the presynaptic membranes and synaptic vesicles. Thus, a clear difference in ganglioside pattern could be discerned between the pre- and postsynaptic elements of the electric organ.Abbreviations SVs
synaptic vesicles
- TLC
thin-layer chromatography
- cholera B-HRP
B subunit of cholera toxin linked to horseradish peroxidase 相似文献
Data are reported for the binding of Ni2+, Co2+, and Mg2+ to the B-form of double-stranded poly(dG-dC) at ionic strength conditions I = 0.001 M, 0.01 M, and 0.1 M. The apparent binding constants for Ni2+ and Co2+ are about the same and are 2- to 3-fold higher than those for Mg2+. Kinetic studies indicate that Mg2+ binds to the polynucleotide mainly (or solely) as a mobile cloud (electrostatically, outer-sphere), whereas the transition metal ions undergo site binding (inner-sphere coordination) with poly(dG-dC). The kinetic data suggest that an Ni2+ ion coordinates to more than one binding site at the polynucleotide, presumably to G-N7 and a phosphate group.
At low ionic strength conditions the addition of Ni2+ induces a B → Z conformational transition in poly(dG-dC). As demonstrated by UV absorption and CD spectroscopy, the transition occurs at I = 0.001 M already when 3 × 10−5 – 7 × 10−5 M of Ni2+ are added to 8 × 10−5 M (in monomeric units) of poly(dG-dC), and at I = 0.01 M between 2.5 × 10−4 and 4.5 × 10−4 M of Ni2+. Using murexide as an indicator of the concentration of free Ni2+ ions, the amount of Ni2+ which is bound to the polynucleotide could be determined. At I = 0.001 M it was established that the B → Z transition begins when 1 Ni2+ is bound coordinatively per four base pairs, and the transition is complete when 1 Ni2+ is bound coordinatively per three base pairs. It is this coordinated Ni2+ which induces the B → Z transition. 相似文献
Optical imaging is an attractive non-invasive way to evaluate the expression of a transferred DNA, mainly thanks to its lower
cost and ease of realization. In this study optical imaging was evaluated for monitoring and quantification of the mouse knee
joint and tibial cranial muscle electrotransfer of a luciferase encoding plasmid. Optical imaging was applied to study the
kinetics of luciferase expression in both tissues. 相似文献
Synaptic vesicles purified on a sucrose-KCl sedimentation gradient were tested for their ability to accumulate [1-14C]acetylcholine ([1-14C]ACh) in the absence and in the presence of AH5183 and cetiedil. Kinetic studies of ACh transport showed that it was time dependent and saturable as a function of ACh concentration, with a KT of 1.2 mM. The protein-modifying agents N-ethylmaleimide and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole were powerful inhibitors of ACh uptake. In agreement with other studies, AH5183 was found to be a potent inhibitor of ACh uptake by synaptic vesicles. Inhibition was of the mixed noncompetitive type, and the inhibition constant was 45.2 +/- 3.4 nM. Cetiedil, a drug that resembles ACh, was previously shown on intact nerve endings to inhibit the translocation of newly synthesized ACh into the synaptic vesicle compartment, and we demonstrate here that cetiedil is indeed an efficient blocker of ACh uptake by isolated synaptic vesicles. It acted as a competitive inhibitor, with a Ki of 118.5 +/- 9.5 nM. Neither ATP-dependent calcium uptake nor Mg2+-ATPase activity was affected by the drugs, a finding showing their specificity toward the ACh uptake process. The binding of L-[3H]AH5183 to intact vesicles was characterized in the absence or the presence of ACh or cetiedil. Saturation experiments showed a total binding capacity of approximately 126 pmol/mg of vesicular protein and a dissociation constant of 19.9 +/- 4.1 nM under control conditions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
Mass spectrometry has become a powerful tool for the analysis of large numbers of proteins in complex samples, enabling much
of proteomics. Due to various analytical challenges, so far no proteome has been sequenced completely. O'Shea, Weissman and
co-workers have recently determined the copy number of yeast proteins, making this proteome an excellent model system to study
factors affecting coverage. 相似文献
Abstract: Using isolated cholinergic synaptosomes prepared from Torpedo electric organ, we studied the effects of N,N'-dicyclohexylcarbodiimide (DCCD) on acetylcholine (ACh) synthesis, compartmentation, and release after stimulation. Whereas ACh synthesis was unchanged, ACh compartmentation inside synaptosomes was affected by the presence of DCCD. In resting conditions, the uptake into the synaptic vesicle pool of newly synthesized ACh (i.e., [14C]ACh synthesized in the presence of the drug) was progressively and markedly inhibited as the duration of DCCD preincubation was increased, whereas compartmentation of endogenous ACh was unchanged in the presence of DCCD. After stimulation, the release of endogenous ACh from DCCD-treated synaptosomes was similar to that of control, in contrast to the release of [14C]ACh, which was markedly inhibited. This inhibition was observed whatever the conditions of stimulation used (gramicidin D, calcium ionophore A23187, or KCI depolarization). The study of the compartmentation of [14C]ACh during stimulation revealed a transfer of highly labeled ACh from the free to the bound ACh compartment in the presence of DCCD, suggesting the existence of several ACh subcompartments within the free and bound ACh pools. The present results are discussed in comparison with the previously reported effects of vesamicol (AH5183) on ACh compartmentation and release. 相似文献