首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3031篇
  免费   251篇
  国内免费   2篇
  2023年   8篇
  2022年   19篇
  2021年   52篇
  2020年   23篇
  2019年   30篇
  2018年   34篇
  2017年   41篇
  2016年   79篇
  2015年   117篇
  2014年   160篇
  2013年   211篇
  2012年   298篇
  2011年   227篇
  2010年   197篇
  2009年   134篇
  2008年   202篇
  2007年   217篇
  2006年   187篇
  2005年   183篇
  2004年   182篇
  2003年   131篇
  2002年   150篇
  2001年   20篇
  2000年   12篇
  1999年   36篇
  1998年   40篇
  1997年   23篇
  1996年   28篇
  1995年   19篇
  1994年   29篇
  1993年   19篇
  1992年   16篇
  1991年   15篇
  1990年   13篇
  1989年   14篇
  1988年   14篇
  1987年   8篇
  1986年   16篇
  1984年   7篇
  1983年   5篇
  1982年   9篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1975年   3篇
  1973年   10篇
  1968年   4篇
排序方式: 共有3284条查询结果,搜索用时 46 毫秒
111.
Intestinal epithelial cells (IEC) play an immunoregulatory role in the intestine. This role involves cell-cell interactions with intraepithelial lymphocytes that may also play a role in some enteropathies. The discovery of the RGD motif-containing Protein ADAM-15 (a disintegrin and metalloprotease-15) raises the question of its involvement in these cell-cell interactions. Cell adhesion assays were performed using the Jurkat E6.1 T cell line as a model of T lymphocytes and Caco2-BBE monolayers as a model of intestinal epithelia. Our results show that an anti-ADAM-15 ectodomain antibody inhibited the attachment of Jurkat cells on Caco2-BBE monolayers. Overexpression of ADAM-15 in Caco2-BBE cells enhanced Jurkat cell binding, and overexpression of ADAM-15 in Jurkat cells enhanced their aggregation. Mutagenesis experiments showed that both the mutation of ADAM-15 RGD domain or the deletion of its cytoplasmic tail decreased these cell-cell interactions. Moreover, wound-healing experiments showed that epithelial ADAM-15-mediated Jurkat cell adhesion to Caco2-BBE cells enhances the mechanisms of wound repair. We also found that ADAM-15-mediated aggregation of Jurkat cells increases the expression of tumor necrosis factor-alpha mRNA. These results demonstrate the following: 1) ADAM-15 is involved in heterotypic adhesion of intraepithelial lymphocytes to IEC as well as in homotypic aggregation of T cells; 2) both the RGD motif and the cytoplasmic tail of ADAM-15 are involved for these cell-cell interactions; and 3) ADAM-15-mediated cell-cell interactions are involved in mechanisms of epithelial restitution and production of pro-inflammatory mediators. Altogether these findings point to ADAM-15 as a possible therapeutic target for prevention of inappropriate T cell activation involved in some pathologies.  相似文献   
112.

Background

A Chikungunya (CHIK) outbreak hit La Réunion Island in 2005–2006. The implicated vector was Aedes albopictus. Here, we present the first study on the susceptibility of Ae. albopictus populations to sympatric CHIKV isolates from La Réunion Island and compare it to other virus/vector combinations.

Methodology and Findings

We orally infected 8 Ae. albopictus collections from La Réunion and 3 from Mayotte collected in March 2006 with two Chikungunya virus (CHIKV) from La Réunion: (i) strain 05.115 collected in June 2005 with an Alanine at the position 226 of the glycoprotein E1 and (ii) strain 06.21 collected in November 2005 with a substitution A226V. Two other CHIKV isolates and four additional mosquito strains/species were also tested. The viral titer of the infectious blood-meal was 107 plaque forming units (pfu)/mL. Dissemination rates were assessed by immunofluorescent staining on head squashes of surviving females 14 days after infection. Rates were at least two times higher with CHIKV 06.21 compared to CHIKV 05.115. In addition, 10 individuals were analyzed every day by quantitative RT-PCR. Viral RNA was quantified on (i) whole females and (ii) midguts and salivary glands of infected females. When comparing profiles, CHIKV 06.21 produced nearly 2 log more viral RNA copies than CHIKV 05.115. Furthermore, females infected with CHIKV 05.115 could be divided in two categories: weakly susceptible or strongly susceptible, comparable to those infected by CHIKV 06.21. Histological analysis detected the presence of CHIKV in salivary glands two days after infection. In addition, Ae. albopictus from La Réunion was as efficient vector as Ae. aegypti and Ae. albopictus from Vietnam when infected with the CHIKV 06.21.

Conclusions

Our findings support the hypothesis that the CHIK outbreak in La Réunion Island was due to a highly competent vector Ae. albopictus which allowed an efficient replication and dissemination of CHIKV 06.21.  相似文献   
113.
114.
The proteome of Rickettsia felis, an obligate intracellular bacterium responsible for spotted fever, was analyzed using two complementary proteomic approaches: 2-DE coupled with MALDI-TOF, and SDS-PAGE with nanoLC-MS/MS. This strategy allowed identification of 165 proteins and helped to answer some questions raised by the genome sequence of this bacterium. We successfully identified potential virulence factors including two putative adhesins, four proteins of the type IV secretion system, four Sca autotransporters, four components of ABC transporters, some R. felis-specific proteins, and one antitoxin of the toxin-antitoxin system. Notably, the antitoxin was the first to be identified in intracellular bacteria. Only one protein containing rickettsia palindromic repeats was found, whereas none of the split genes, transposases, or tetratricopeptide/ankyrin repeats were detectably expressed. Comparison of the protein expression profiles of R. felis and 23 other bacterial species according to functional categories showed that intracellular bacteria express more proteins related to translation, especially ribosomal proteins. However, the remaining bacteria express more proteins related to energy production and carbohydrate/amino acid metabolism. In conclusion, this study reveals R. felis virulence factor expression and highlights the unique protein expression profile of intracellular bacteria.  相似文献   
115.
The Rickettsia genus is a group of obligate intracellular α-proteobacteria representing a paradigm of reductive evolution. Here, we investigate the evolutionary processes that shaped the genomes of the genus. The reconstruction of ancestral genomes indicates that their last common ancestor contained more genes, but already possessed most traits associated with cellular parasitism. The differences in gene repertoires across modern Rickettsia are mainly the result of differential gene losses from the ancestor. We demonstrate using computer simulation that the propensity of loss was variable across genes during this process. We also analyzed the ratio of nonsynonymous to synonymous changes (Ka/Ks) calculated as an average over large sets of genes to assay the strength of selection acting on the genomes of Rickettsia, Anaplasmataceae, and free-living γ-proteobacteria. As a general trend, Ka/Ks were found to decrease with increasing divergence between genomes. The high Ka/Ks for closely related genomes are probably due to a lag in the removal of slightly deleterious nonsynonymous mutations by natural selection. Interestingly, we also observed a decrease of the rate of gene loss with increasing divergence, suggesting a similar lag in the removal of slightly deleterious pseudogene alleles. For larger divergence (Ks > 0.2), Ka/Ks converge toward similar values indicating that the levels of selection are roughly equivalent between intracellular α-proteobacteria and their free-living relatives. This contrasts with the view that obligate endocellular microorganisms tend to evolve faster as a consequence of reduced effectiveness of selection, and suggests a major role of enhanced background mutation rates on the fast protein divergence in the obligate intracellular α-proteobacteria.  相似文献   
116.
A pandemic of metabolic diseases (atherosclerosis, diabetes mellitus, and obesity), unleashed by multiple social and economic factors beyond the control of most individuals, threatens to diminish human life span for the first time in the modern era. Given the redundancy and inherent complexity of processes regulating the uptake, transport, catabolism, and synthesis of nutrients, magic bullets to target these diseases will be hard to find. Recent studies using the worm Caenorhabditis elegans, the fly Drosophila melanogaster, and the zebrafish Danio rerio indicate that these "lower" metazoans possess unique attributes that should help in identifying, investigating, and even validating new pharmaceutical targets for these diseases. We summarize findings in these organisms that shed light on highly conserved pathways of energy homeostasis.  相似文献   
117.
TRIM5α is a restriction factor that limits infection of human cells by so-called N- but not B- or NB-tropic strains of murine leukemia virus (MLV). Here, we performed a mutation-based functional analysis of TRIM5α-mediated MLV restriction. Our results reveal that changes at tyrosine336 of human TRIM5α, within the variable region 1 of its C-terminal PRYSPRY domain, can expand its activity to B-MLV and to the NB-tropic Moloney MLV. Conversely, we demonstrate that the escape of MLV from restriction by wild-type or mutant forms of huTRIM5α can be achieved through interdependent changes at positions 82, 109, 110, and 117 of the viral capsid. Together, our results support a model in which TRIM5α-mediated retroviral restriction results from the direct binding of the antiviral PRYSPRY domain to the viral capsid, and can be prevented by interferences exerted by critical residues on either one of these two partners.  相似文献   
118.
119.
The discovery of Acanthamoeba polyphaga Mimivirus, the first isolated giant virus of amoeba, challenged the historical hallmarks defining a virus. Giant virion sizes are known to reach up to 2.3 µm, making them visible by optical microscopy. Their large genome sizes of up to 2.5 Mb can encode proteins involved in the translation apparatus. We have investigated possible energy production in Pandoravirus massiliensis. Mitochondrial membrane markers allowed for the detection of a membrane potential in purified virions and this was enhanced by a regulator of the tricarboxylic acid cycle but abolished by the use of a depolarizing agent. Bioinformatics was employed to identify enzymes involved in virion proton gradient generation and this approach revealed that eight putative P. massiliensis proteins exhibited low sequence identities with known cellular enzymes involved in the universal tricarboxylic acid cycle. Further, all eight viral genes were transcribed during replication. The product of one of these genes, ORF132, was cloned and expressed in Escherichia coli, and shown to function as an isocitrate dehydrogenase, a key enzyme of the tricarboxylic acid cycle. Our findings show for the first time that a membrane potential can exist in Pandoraviruses, and this may be related to tricarboxylic acid cycle. The presence of a proton gradient in P. massiliensis makes this virus a form of life for which it is legitimate to ask the question “what is a virus?”.Subject terms: Virology, Molecular evolution  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号