首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3036篇
  免费   252篇
  国内免费   2篇
  3290篇
  2023年   9篇
  2022年   24篇
  2021年   52篇
  2020年   23篇
  2019年   30篇
  2018年   34篇
  2017年   41篇
  2016年   79篇
  2015年   117篇
  2014年   160篇
  2013年   211篇
  2012年   298篇
  2011年   227篇
  2010年   197篇
  2009年   134篇
  2008年   202篇
  2007年   217篇
  2006年   187篇
  2005年   183篇
  2004年   181篇
  2003年   131篇
  2002年   150篇
  2001年   19篇
  2000年   12篇
  1999年   36篇
  1998年   40篇
  1997年   23篇
  1996年   28篇
  1995年   19篇
  1994年   29篇
  1993年   19篇
  1992年   16篇
  1991年   15篇
  1990年   13篇
  1989年   14篇
  1988年   14篇
  1987年   8篇
  1986年   16篇
  1984年   7篇
  1983年   5篇
  1982年   9篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1975年   3篇
  1973年   10篇
  1968年   4篇
排序方式: 共有3290条查询结果,搜索用时 15 毫秒
31.
Assembly of cytosolic factors p67(phox) and p47(phox) with cytochrome b(558) is one of the crucial keys for NADPH oxidase activation. Certain sequences of Nox2 appear to be involved in cytosolic factor interaction. The role of the D-loop (191)TSSTKTIRRS(200) and the C-terminal (484)DESQANHFAVHHDEEKD(500) of Nox2 on oxidase activity and assembly was investigated. Charged amino acids were mutated to neutral or reverse charge by directed mutagenesis to generate 21 mutants. Recombinant wild-type or mutant Nox2 were expressed in the X-CGD PLB-985 cell model. K195A/E, R198E, R199E, and RR198199QQ/AA mutations in the D-loop of Nox2 totally abolished oxidase activity. However, these D-loop mutants demonstrated normal p47(phox) translocation and iodonitrotetrazolium (INT) reductase activity, suggesting that charged amino acids of this region are essential for electron transfer from FAD to oxygen. Replacement of Nox2 D-loop with its homolog of Nox1, Nox3, or Nox4 was fully functional. In addition, fMLP (formylmethionylleucylphenylalanine)-activated R199Q-Nox2 and D-loop(Nox4)-Nox2 mutants exhibited four to eight times the NADPH oxidase activity of control cells, suggesting that these mutations lead to a more efficient oxidase activation process. In contrast, the D484T and D500A/R/G mutants of the alpha-helical loop of Nox2 exhibited no NADPH oxidase and INT reductase activities associated with a defective p47(phox) membrane translocation. This suggests that the alpha-helical loop of the C-terminal of Nox2 is probably involved in the correct assembly of the NADPH oxidase complex occurring during activation, permitting cytosolic factor translocation and electron transfer from NADPH to FAD.  相似文献   
32.
Philonthus and other genera of Philonthina possess a pair of prototergal glands located in the first abdominal tergum and hidden at rest by hind wings and elytra. In Philonthus varians they occupy the whole length of the tergum and form a pouch-like invaginated reservoir with a scaly glandular zone and a smooth outlet. A grille of long setae covers the opening of each gland. The fine structure of these glands is given for the first time. Three types of cells are found in the glandular epithelium. Epidermal cells underlie the cuticular scales, numerous class 1 secretory cells open in the centre of calyces made of finger-like processes of the cuticle, and class 3 cells are connected to pored tubercles. A cytological comparison is made with the diverse class 1 cells described to date in Coleoptera. In these cells different evolutionary trends are shown in the structure of the cuticular apparatus, particularly in the number, size and position of the cuticular apertures as well as in the length and abundance of epicuticular filaments. A possible defensive function of the prototergal glands against pathogens and their interest for the phylogenetic study of Staphylininae are discussed.  相似文献   
33.
Multiprotein complexes catalyze vital biological functions in the cell. A paramount objective of the SPINE2 project was to address the structural molecular biology of these multiprotein complexes, by enlisting and developing enabling technologies for their study. An emerging key prerequisite for studying complex biological specimens is their recombinant overproduction. Novel reagents and streamlined protocols for rapidly assembling co-expression constructs for this purpose have been designed and validated. The high-throughput pipeline implemented at IGBMC Strasbourg and the ACEMBL platform at the EMBL Grenoble utilize recombinant overexpression systems for heterologous expression of proteins and their complexes. Extension of the ACEMBL platform technology to include eukaryotic hosts such as insect and mammalian cells has been achieved. Efficient production of large multicomponent protein complexes for structural studies using the baculovirus/insect cell system can be hampered by a stoichiometric imbalance of the subunits produced. A polyprotein strategy has been developed to overcome this bottleneck and has been successfully implemented in our MultiBac baculovirus expression system for producing multiprotein complexes.  相似文献   
34.
Bartonella senegalensis sp. nov. strain OS02T is the type strain of B. senegalensis sp. nov., a new species within the genus Bartonella. This strain, whose genome is described here, was isolated in Senegal from the soft tick Ornithodoros sonrai, the vector of relapsing fever. B. senegalensis is an aerobic, rod-shaped, Gram-negative bacterium. Here we describe the features of this organism, together with the complete genome sequence and its annotation. The 1,966,996 bp-long genome contains 1,710 protein-coding and 46 RNA genes, including 6 rRNA genes.  相似文献   
35.

Background  

Acanthamoebae polyphaga Mimivirus (APM) is the largest known dsDNA virus. The viral particle has a nearly icosahedral structure with an internal capsid shell surrounded with a dense layer of fibrils. A Capsid protein sequence, D13L, was deduced from the APM L425 coding gene and was shown to be the most abundant protein found within the viral particle. However this protein remained poorly characterised until now. A revised protein sequence deposited in a database suggested an additional N-terminal stretch of 142 amino acids missing from the original deduced sequence. This result led us to investigate the L425 gene structure and the biochemical properties of the complete APM major Capsid protein.  相似文献   
36.
Protein glycosylation is a complex process that depends not only on the activities of several enzymes and transporters but also on a subtle balance between vesicular Golgi trafficking, compartmental pH, and ion homeostasis. Through a combination of autozygosity mapping and expression analysis in two siblings with an abnormal serum-transferrin isoelectric focusing test (type 2) and a peculiar skeletal phenotype with epiphyseal, metaphyseal, and diaphyseal dysplasia, we identified TMEM165 (also named TPARL) as a gene involved in congenital disorders of glycosylation (CDG). The affected individuals are homozygous for a deep intronic splice mutation in TMEM165. In our cohort of unsolved CDG-II cases, we found another individual with the same mutation and two unrelated individuals with missense mutations in TMEM165. TMEM165 encodes a putative transmembrane 324 amino acid protein whose cellular functions are unknown. Using a siRNA strategy, we showed that TMEM165 deficiency causes Golgi glycosylation defects in HEK cells.  相似文献   
37.
Construction of synthetic genes is today the most elegant way to optimize the heterologous expression of a recombinant protein. However, the selection of positive clones that incorporate the correct synthetic DNA fragments is a bottleneck as current methods of gene synthesis introduce 3.5 nucleotide deletions per kb. Furthermore, even when all predictable optimizations for protein production have been introduced into the synthetic gene, production of the protein is often disappointing: protein is produced in too low amounts or end up in inclusion bodies. We propose a strategy to overcome these two problems simultaneously by cloning the synthetic gene upstream of a reporter gene. This permits the selection of clones devoid of frame-shift mutations. In addition, beside nucleotide deletion, an average of three non-neutral mutations per kb are introduced during gene synthesis. Using a reporter protein downstream of the synthetic gene, allows the selection of clones with random mutations improving the expression or the folding of the protein of interest. The problem of errors found in synthetic genes is then turned into an advantage since it provides polymorphism useful for molecular evolution. The use of synthetic genes appears as an alternative to the error-prone PCR strategy to generate the variations necessary in protein engineering experiments.  相似文献   
38.
While pectate lyases are major parasitism factors in plant-parasitic nematodes, there is little information on the variability of these genes within species and their utility as pathotype or host range molecular markers. We have analysed polymorphisms of pectate lyase 2 (pel-2) gene, which degrades the unesterified polygalacturonate (pectate) of the host cell-wall, in the genus Globodera. Molecular variability of the pel-2 gene and the predicted protein was evaluated in populations of G. rostochiensis, G. pallida, G.mexicana” and G. tabacum. Seventy eight pel-2 sequences were obtained and aligned. Point mutations were observed at 373 positions, 57% of these affect the coding part of the gene and produce 129 aa replacements. The observed polymorphism does not correlate either to the pathotypes proposed in potato cyst nematodes (PCN) or the subspecies described in tobacco cyst nematodes. The trees reveal a topology different from the admitted species topology as G. rostochiensis and G. pallida sequences are more similar to each other than to G. tabacum. Species-specific sites, potentially applicable for identification, and sites distinguishing PCN from tobacco cyst nematodes, were identified. As both G. rostochiensis and G. pallida display the same host range, but distinct from G. tabacum, which cannot parasitize potato plants, it is tempting to speculate that pel-2 genes polymorphism may be implicated in this adaptation, a view supported by the fact that no active pectate lyase 2 was found in G.mexicana”, a close relative of G. pallida that is unable to develop on cultivated potato varieties.  相似文献   
39.
40.
We describe here the construction of a 10-Gateway-based vector set applicable for high-throughput cloning and for expressing recombinant proteins in Escherichia coli. Plasmids bear elements required to produce recombinant proteins under control of the T7 promoter and encode different N-terminal partners. Since the vector set is derived from a unique backbone, a consistent comparison of the impact of fusion partner(s) on protein expression and solubility is easily amenable. Finally, a sequence encoding a six-histidine tag has been inserted to be in frame with the cloned open reading frame either at its C terminus or at the N terminus, giving the flexibility of choosing the six-histidine tag location for further purification. To test the applicability of our vector set, expression and solubility profile and six-histidine tag accessibility have been demonstrated for two Bacillus subtilis signaling proteins' encoding genes (SBGP codes E0508 and E0511).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号