首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3036篇
  免费   252篇
  国内免费   2篇
  3290篇
  2023年   9篇
  2022年   24篇
  2021年   52篇
  2020年   23篇
  2019年   30篇
  2018年   34篇
  2017年   41篇
  2016年   79篇
  2015年   117篇
  2014年   160篇
  2013年   211篇
  2012年   298篇
  2011年   227篇
  2010年   197篇
  2009年   134篇
  2008年   202篇
  2007年   217篇
  2006年   187篇
  2005年   183篇
  2004年   181篇
  2003年   131篇
  2002年   150篇
  2001年   19篇
  2000年   12篇
  1999年   36篇
  1998年   40篇
  1997年   23篇
  1996年   28篇
  1995年   19篇
  1994年   29篇
  1993年   19篇
  1992年   16篇
  1991年   15篇
  1990年   13篇
  1989年   14篇
  1988年   14篇
  1987年   8篇
  1986年   16篇
  1984年   7篇
  1983年   5篇
  1982年   9篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1975年   3篇
  1973年   10篇
  1968年   4篇
排序方式: 共有3290条查询结果,搜索用时 0 毫秒
71.
The molecular identity of mammalian phosphopentomutase has not yet been established unequivocally. That of glucose-1,6-bisphosphate synthase, the enzyme that synthesizes a cofactor for phosphomutases and putative regulator of glycolysis, is completely unknown. In the present work, we have purified phosphopentomutase from human erythrocytes and found it to copurify with a 68-kDa polypeptide that was identified by mass spectrometry as phosphoglucomutase 2 (PGM2), a protein of the alpha-d-phosphohexomutase family and sharing about 20% identity with mammalian phosphoglucomutase 1. Data base searches indicated that vertebrate genomes contained, in addition to PGM2, a homologue (PGM2L1, for PGM2-like 1) sharing about 60% sequence identity with this protein. Both PGM2 and PGM2L1 were overexpressed in Escherichia coli, purified, and their properties were studied. Using catalytic efficiency as a criterion, PGM2 acted more than 10-fold better as a phosphopentomutase (both on deoxyribose 1-phosphate and on ribose 1-phosphate) than as a phosphoglucomutase. PGM2L1 showed only low (<5%) phosphopentomutase and phosphoglucomutase activities compared with PGM2, but was about 5-20-fold better than the latter enzyme in catalyzing the 1,3-bisphosphoglycerate-dependent synthesis of glucose 1,6-bisphosphate and other aldose-bisphosphates. Furthermore, quantitative real-time PCR analysis indicated that PGM2L1 was mainly expressed in brain where glucose-1,6-bisphosphate synthase activity was previously shown to be particularly high. We conclude that mammalian phosphopentomutase and glucose-1,6-bisphosphate synthase correspond to two closely related proteins, PGM2 and PGM2L1, encoded by two genes that separated early in vertebrate evolution.  相似文献   
72.
73.
The proteome of Rickettsia felis, an obligate intracellular bacterium responsible for spotted fever, was analyzed using two complementary proteomic approaches: 2-DE coupled with MALDI-TOF, and SDS-PAGE with nanoLC-MS/MS. This strategy allowed identification of 165 proteins and helped to answer some questions raised by the genome sequence of this bacterium. We successfully identified potential virulence factors including two putative adhesins, four proteins of the type IV secretion system, four Sca autotransporters, four components of ABC transporters, some R. felis-specific proteins, and one antitoxin of the toxin-antitoxin system. Notably, the antitoxin was the first to be identified in intracellular bacteria. Only one protein containing rickettsia palindromic repeats was found, whereas none of the split genes, transposases, or tetratricopeptide/ankyrin repeats were detectably expressed. Comparison of the protein expression profiles of R. felis and 23 other bacterial species according to functional categories showed that intracellular bacteria express more proteins related to translation, especially ribosomal proteins. However, the remaining bacteria express more proteins related to energy production and carbohydrate/amino acid metabolism. In conclusion, this study reveals R. felis virulence factor expression and highlights the unique protein expression profile of intracellular bacteria.  相似文献   
74.
The yeast Snf1, animal AMPK, and plant SnRK1 protein kinases constitute a family of related proteins that have been proposed to serve as metabolic sensors of the eukaryotic cell. We have previously reported the characterization of two redundant SnRK1 encoding genes (PpSNF1a and PpSNF1b) in the moss Physcomitrella patens. Phenotypic analysis of the snf1a snf1b double knockout mutant suggested that SnRK1 is important for the plant’s ability to recognize and adapt to conditions of limited energy supply, and also suggested a possible role of SnRK1 in the control of plant development. We have now used a yeast two-hybrid system to screen for PpSnf1a interacting proteins. Two new moss genes were found, PpSKI1 and PpSKI2, which encode highly similar proteins with homologues in vascular plants. Fusions of the two encoded proteins to the green fluorescent protein localize to the nucleus. Knockout mutants for either gene have an excess of gametophores under low light conditions, and exhibit reduced gametophore stem lengths. Possible functions of the new proteins and their connection to the SnRK1 kinase are discussed.  相似文献   
75.
The overwhelming majority of DNA photoproducts in UV-irradiated spores is a unique thymine dimer called spore photoproduct (SP, 5-thymine-5,6-dihydrothymine). This lesion is repaired by the spore photoproduct lyase (SP lyase) enzyme that directly reverts SP to two unmodified thymines. The SP lyase is an S-adenosylmethionine-dependent iron-sulfur protein that belongs to the radical S-adenosylmethionine superfamily. In this study, by using a well characterized preparation of the SP lyase enzyme from Bacillus subtilis, we show that SP in the form of a dinucleoside monophosphate (spore photoproduct of thymidilyl-(3'-5')-thymidine) is efficiently repaired, allowing a kinetic characterization of the enzyme. The preparation of this new substrate is described, and its identity is confirmed by mass spectrometry and comparison with authentic spore photoproduct. The fact that the spore photoproduct of thymidilyl-(3'-5')-thymidine dimer is repaired by SP lyase may indicate that the SP lesion does not absolutely need to be contained within a single- or double-stranded DNA for recognition and repaired by the SP lyase enzyme.  相似文献   
76.
The succession in bacterial community composition was studied over two years in the epilimnion and hypolimnion of two freshwater systems: a natural lake (Pavin Lake) and a lake-reservoir (Sep Reservoir). The bacterial community composition was determined by cloning-sequencing of 16S rRNA and by terminal restriction fragment length polymorphism. Despite large hydrogeological differences, in the Sep Reservoir and Pavin Lake the dominant bacteria were from the same taxonomic divisions, particularly Actinobacteria and Betaproteobacteria. In both ecosystems, these major bacterial divisions showed temporal fluctuations that were much less marked than those occurring at a finer phylogenetic scale. Nutrient availability and mortality factors, the nature of which differed from one lake to another, covaried with the temporal variations in the bacterial community composition at all sampling depths, whereas factors related to seasonal forces (temperature and outflow for Sep Reservoir) seemed to account only for the variation of the hypolimnion bacterial community composition. No seasonal reproducibility in temporal evolution of bacterial community from one year to the next was observed.  相似文献   
77.
The X+-linked chronic granulomatous disease (X+-CGD) variants are natural mutants characterized by defective NADPH oxidase activity but with normal Nox2 expression. According to the three-dimensional model of the cytosolic Nox2 domain, most of the X+-CGD mutations are located in/or close to the FAD/NADPH binding regions. A structure/function study of this domain was conducted in X+-CGD PLB-985 cells exactly mimicking 10 human variants: T341K, C369R, G408E, G408R, P415H, P415L, Δ507QKT509-HIWAinsert, C537R, L546P, and E568K. Diaphorase activity is defective in all these mutants. NADPH oxidase assembly is normal for P415H/P415L and T341K mutants where mutation occurs in the consensus sequences of NADPH- and FAD-binding sites, respectively. This is in accordance with their buried position in the three-dimensional model of the cytosolic Nox2 domain. FAD incorporation is abolished only in the T341K mutant explaining its absence of diaphorase activity. This demonstrates that NADPH oxidase assembly can occur without FAD incorporation. In addition, a defect of NADPH binding is a plausible explanation for the diaphorase activity inhibition in the P415H, P415L, and C537R mutants. In contrast, Cys-369, Gly-408, Leu-546, and Glu-568 are essential for NADPH oxidase complex assembly. However, according to their position in the three-dimensional model of the cytosolic domain of Nox2, only Cys-369 could be in direct contact with cytosolic factors during oxidase assembly. In addition, the defect in oxidase assembly observed in the C369R, G408E, G408R, and E568K mutants correlates with the lack of FAD incorporation. Thus, the NADPH oxidase assembly process and FAD incorporation are closely related events essential for the diaphorase activity of Nox2.  相似文献   
78.
Flavonoids are a group of secondary metabolites derived from the phenylpropanoid pathway. They are ubiquitous in the plant kingdom and have many diverse functions including key roles at different levels of root endosymbioses. While there is a lot of information on the role of particular flavonoids in the Rhizobium-legume symbiosis, yet their exact role during the establishment of arbuscular mycorrhiza and actinorhizal symbioses still remains unclear. Within the context of the latest data suggesting a common symbiotic signaling pathway for both plant-fungal and plant bacterial endosymbioses between legumes and actinorhiza-forming fagales, this mini-review highlights some of the recent studies on the three major types of root endosymbioses. Implication of the molecular knowledge of endosymbioses signaling and genetic manipulation of flavonoid biosynthetic pathway on the development of strategies for the transfer and optimization of nodulation are also discussed.  相似文献   
79.
We describe here the construction of a 10-Gateway-based vector set applicable for high-throughput cloning and for expressing recombinant proteins in Escherichia coli. Plasmids bear elements required to produce recombinant proteins under control of the T7 promoter and encode different N-terminal partners. Since the vector set is derived from a unique backbone, a consistent comparison of the impact of fusion partner(s) on protein expression and solubility is easily amenable. Finally, a sequence encoding a six-histidine tag has been inserted to be in frame with the cloned open reading frame either at its C terminus or at the N terminus, giving the flexibility of choosing the six-histidine tag location for further purification. To test the applicability of our vector set, expression and solubility profile and six-histidine tag accessibility have been demonstrated for two Bacillus subtilis signaling proteins' encoding genes (SBGP codes E0508 and E0511).  相似文献   
80.
Conversion of the cellular alpha-helical prion protein (PrP(C)) into a disease-associated isoform (PrP(Sc)) is central to the pathogenesis of prion diseases. Molecules targeting either normal or disease-associated isoforms may be of therapeutic interest, and the antibodies binding PrP(C) have been shown to inhibit prion accumulation in vitro. Here we investigate whether antibodies that additionally target disease-associated isoforms such as PrP(Sc) inhibit prion replication in ovine PrP-inducible scrapie-infected Rov cells. We conclude from these experiments that antibodies exclusively binding PrP(C) were relatively inefficient inhibitors of ScRov cell PrP(Sc) accumulation compared with antibodies that additionally targeted disease-associated PrP isoforms. Although the mechanism by which these monoclonal antibodies inhibit prion replication is unclear, some of the data suggest that antibodies might actively increase PrP(Sc) turnover. Thus antibodies that bind to both normal and disease-associated isoforms represent very promising anti-prion agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号