首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3065篇
  免费   256篇
  国内免费   2篇
  3323篇
  2023年   9篇
  2022年   24篇
  2021年   52篇
  2020年   23篇
  2019年   30篇
  2018年   35篇
  2017年   41篇
  2016年   79篇
  2015年   117篇
  2014年   162篇
  2013年   211篇
  2012年   298篇
  2011年   231篇
  2010年   198篇
  2009年   137篇
  2008年   205篇
  2007年   218篇
  2006年   190篇
  2005年   184篇
  2004年   181篇
  2003年   132篇
  2002年   151篇
  2001年   21篇
  2000年   14篇
  1999年   36篇
  1998年   41篇
  1997年   23篇
  1996年   28篇
  1995年   19篇
  1994年   29篇
  1993年   19篇
  1992年   16篇
  1991年   15篇
  1990年   16篇
  1989年   14篇
  1988年   16篇
  1987年   8篇
  1986年   16篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   9篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1973年   10篇
  1968年   4篇
排序方式: 共有3323条查询结果,搜索用时 9 毫秒
51.
Vagus nerve stimulation (VNS) has been successfully performed in animals for the treatment of different experimental models of inflammation. The anti-inflammatory effect of VNS involves the release of acetylcholine by vagus nerve efferent fibers inhibiting pro-inflammatory cytokines (e.g. TNF-α) produced by macrophages. Moreover, it has recently been demonstrated that splenic lymphocytic populations may also be involved. As anesthetics can modulate the inflammatory response, the current study evaluated the effect of two different anesthetics, isoflurane and pentobarbital, on splenic cellular and molecular parameters in a VNS rat model. Spleens were collected for the characterization of lymphocytes sub-populations by flow cytometry and quantification of cytokines secretion after in vitro activation. Different results were observed depending on the anesthetic used. The use of isoflurane displayed a non-specific effect of VNS characterized by a decrease of most splenic lymphocytes sub-populations studied, and also led to a significantly lower TNF-α secretion by splenocytes. However, the use of pentobarbital brought to light immune modifications in non-stimulated animals that were not observed with isoflurane, and also revealed a specific effect of VNS, notably at the level of T lymphocytes’ activation. These differences between the two anesthetics could be related to the anti-inflammatory properties of isoflurane. In conclusion, pentobarbital is more adapted than isoflurane in the study of the anti-inflammatory effect of VNS on an anesthetized rat model in that it allows more accurate monitoring of subtle immunomodulatory processes.  相似文献   
52.
53.
Evolution sometimes proceeds by loss, especially when structures and genes become dispensable after an environmental shift relaxes functional constraints. Subterranean vertebrates are outstanding models to analyze this process, and gene decay can serve as a readout. We sought to understand some general principles on the extent and tempo of the decay of genes involved in vision, circadian clock, and pigmentation in cavefishes. The analysis of the genomes of two Cuban species belonging to the genus Lucifuga provided evidence for the largest loss of eye-specific genes and nonvisual opsin genes reported so far in cavefishes. Comparisons with a recently evolved cave population of Astyanax mexicanus and three species belonging to the Chinese tetraploid genus Sinocyclocheilus revealed the combined effects of the level of eye regression, time, and genome ploidy on eye-specific gene pseudogenization. The limited extent of gene decay in all these cavefishes and the very small number of loss-of-function mutations per pseudogene suggest that their eye degeneration may not be very ancient, ranging from early to late Pleistocene. This is in sharp contrast with the identification of several vision genes carrying many loss-of-function mutations in ancient fossorial mammals, further suggesting that blind fishes cannot thrive more than a few million years in cave ecosystems.  相似文献   
54.
The main targets of hepatitis C virus (HCV) are hepatocytes, the highly polarized cells of the liver, and all the steps of its life cycle are tightly dependent on host lipid metabolism. The interplay between polarity and lipid metabolism in HCV infection has been poorly investigated. Signaling lipids, such as phosphoinositides (PIs), play a vital role in polarity, which depends on the distribution and expression of PI kinases and PI phosphatases. In this study, we report that HCV core protein, expressed in Huh7 and Madin–Darby canine kidney (MDCK) cells, disrupts apicobasal polarity. This is associated with decreased expression of the polarity protein Dlg1 and the PI phosphatase SHIP2, which converts phosphatidylinositol 3,4,5-trisphosphate into phosphatidylinositol 4,5-bisphosphate (PtdIns(3,4)P2). SHIP2 is mainly localized at the basolateral membrane of polarized MDCK cells. In addition, PtdIns(3,4)P2 is able to bind to Dlg1. SHIP2 small interfering RNA or its catalytically dead mutant disrupts apicobasal polarity, similar to HCV core. In core-expressing cells, RhoA activity is inhibited, whereas Rac1 is activated. Of interest, SHIP2 expression rescues polarity, RhoA activation, and restricted core level in MDCK cells. We conclude that SHIP2 is an important regulator of polarity, which is subverted by HCV in epithelial cells. It is suggested that SHIP2 could be a promising target for anti-HCV treatment.  相似文献   
55.
Abstract

Reaction of abasic site-containing oligonucleotides with an oxyamino fluorescent label is described. The reaction represents an efficient method to functionalize oligonucleotides at preselected positions.  相似文献   
56.
Abstract

The synthesis of Methylene(methylimino) or MMI linked nucleoside dimers in all sixteen possible configurations has been accomplished via a reductive coupling of a nucleosidic aldehyde with an hydroxylamine. This has allowed us to prepare all of the necessary 2′-O-methyl MMI dimer building blocks necessary for use in an antisense motif.  相似文献   
57.
58.
Brown adipose tissue (BAT) has long been thought to be absent or very scarce in human adults so that its contribution to energy expenditure was not considered as relevant. The recent discovery of thermogenic BAT in human adults opened the field for innovative strategies to combat overweight/obesity and associated diseases. This energy-dissipating function of BAT is responsible for adaptive thermogenesis in response to cold stimulation. In this context, adipocytes can be converted, within white adipose tissue (WAT), into multilocular adipocytes expressing UCP1, a mitochondrial protein that plays a key role in heat production by uncoupling the activity of the respiratory chain from ATP synthesis. These adipocytes have been named “brite” or “beige” adipocytes. Whereas BAT has been studied for a long time in murine models both in vivo and in vitro, there is now a strong demand for human cellular models to validate and/or identify critical factors involved in the induction of a thermogenic program within adipocytes. In this review we will discuss the different human cellular models described in the literature and what is known regarding the regulation of their differentiation and/or activation process. In addition, the role of microRNAs as novel regulators of brown/“brite” adipocyte differentiation and conversion will be depicted. Finally, investigation of both the conversion and the metabolism of white-to-brown converted adipocytes is required for the development of therapeutic strategies targeting overweight/obesity and associated diseases. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号