首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   47篇
  国内免费   9篇
  451篇
  2021年   5篇
  2018年   3篇
  2016年   4篇
  2015年   16篇
  2014年   19篇
  2013年   24篇
  2012年   15篇
  2011年   20篇
  2010年   21篇
  2009年   20篇
  2008年   10篇
  2007年   18篇
  2006年   17篇
  2005年   11篇
  2004年   16篇
  2003年   10篇
  2002年   9篇
  2001年   10篇
  2000年   5篇
  1999年   7篇
  1998年   8篇
  1997年   11篇
  1996年   5篇
  1995年   5篇
  1994年   12篇
  1992年   5篇
  1991年   8篇
  1990年   10篇
  1989年   8篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1979年   4篇
  1978年   5篇
  1977年   9篇
  1976年   6篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1972年   5篇
  1971年   7篇
  1970年   4篇
  1968年   5篇
  1967年   3篇
  1960年   3篇
排序方式: 共有451条查询结果,搜索用时 0 毫秒
11.
Jakob  CA; Burda  P; te Heesen  S; Aebi  M; Roth  J 《Glycobiology》1998,8(2):155-164
In higher eukaryotes a quality control system monitoring the folding state of glycoproteins is located in the ER and is composed of the proteins calnexin, calreticulin, glucosidase II, and UDP-glucose: glycoprotein glucosyltransferase. It is believed that the innermost glucose residue of the N- linked oligosaccharide of a glycoprotein serves as a tag in this control system and therefore performs an important function in the protein folding pathway. To address this function, we constructed Saccharomyces cerevisiae strains which contain nonglucosylated (G0), monoglucosylated (G1), or diglucosylated (G2) glycoproteins in the ER and used these strains to study the role of glucose residues in the ER processing of glycoproteins. These alterations of the oligosaccharide structure did not result in a growth phenotype, but the induction of the unfolded protein response upon treatment with DTT was much higher in G0 and G2 strains as compared to wild-type and G1 strains. Our results provide in vivo evidence that the G1 oligosaccharide is an active oligosaccharide structure in the ER glycoprotein processing pathway of S.cerevisiae. Furthermore, by analyzing N- linked oligosaccharides of the constructed strains we can directly show that no general glycoprotein glucosyltransferase exists in S. cerevisiae.   相似文献   
12.
13.
14.
1. Predation‐exclusion experiments have highlighted that top‐down control is pervasive in terrestrial communities, but most of these experiments are simplistic in that they only excluded a single group of predators and the effect of removal was evaluated on a few species from the community. The main goal of our study was to experimentally establish the relative effects of ants and birds on the same arthropod assemblage of canopy trees. 2. We conducted 1‐year long manipulative experiments in an organic citrus grove intended to quantify the independent effects of bird and ant predators on the abundance of arthropods. Birds were excluded with plastic nets whereas ants were excluded with sticky barriers on the trunks. The sticky barrier also excluded other ground dwelling insects, like the European earwig Forficula auricularia L. 3. Both the exclusion of ants and birds affected the arthropod community of the citrus canopies, but the exclusion of ants was far more important than the exclusion of birds. Indeed, almost all groups of arthropods had higher abundance in ant‐excluded than in control trees, whereas only dermapterans were more abundant in bird‐excluded than in control trees. A more detailed analysis conducted on spiders also showed that the effect of ant exclusion was limited to a few families rather than being widespread over the entire diverse spectrum of spiders. 4. Our results suggest that the relative importance of vertebrate and invertebrate predators in regulating arthropod populations largely depends on the nature of the predator–prey system.  相似文献   
15.
16.

Background  

Biological networks characterize the interactions of biomolecules at a systems-level. One important property of biological networks is the modular structure, in which nodes are densely connected with each other, but between which there are only sparse connections. In this report, we attempted to find the relationship between the network topology and formation of modular structure by comparing gene co-expression networks with random networks. The organization of gene functional modules was also investigated.  相似文献   
17.
18.
Bending and curvature calculations in B-DNA.   总被引:21,自引:7,他引:21       下载免费PDF全文
A simple program, BEND, has been written to calculate the magnitude of local bending and macroscopic curvature at each point along an arbitrary B-DNA sequence, using any desired bending model that specifies values of twist, roll and tilt as a function of sequence. The program has been used to evaluate six different DNA bending models in three categories. Two are bent non-A-tract models: (a) A new model based on the nucleosome positioning data of Satchwell et al 1986 (J. Mol. Biol. 191, 659-675), (b) The model of Calladine et al 1988 (J. Mol. Biol. 201, 127-137). Three are bent A-tract models: (c) The wedge model of Bolshoy et al 1991 (Proc. Natl. Acad. Sci. USA 88, 2312-2316), (d) The model of Cacchione et al 1989 (Biochem. 28, 8706-8713), (e) A reversed version of model (b). The last is a junction model: (f) The model of Koo & Crothers 1988 (Proc. Natl. Acad. Sci. USA 85, 1763-1767). Although they have widely different assumptions and values for twist, roll and tilt, all six models correctly predict experimental A-tract curvature as measured by gel retardation and cyclization kinetics, but only the new nucleosome positioning model is successful in predicting curvature in regions containing phased GGGCCC sequences. This model--showing local bending at mixed sequence DNA, strong bends at the sequence GGC, and straight, rigid A-tracts--is the only model consistent with both solution data from gel retardation and cyclization kinetics and structural data from x-ray crystallography.  相似文献   
19.
Binding of an antitumor drug to DNA, Netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G   总被引:27,自引:0,他引:27  
The antitumor antibiotic netropsin has been co-crystallized with a double-helical B-DNA dodecanucleotide of sequence: C-G-C-G-A-A-T-T-BrC-G-C-G, and the structure of the complex has been solved by X-ray diffraction at a resolution of 2.2 A. The structure has been refined independently by Jack-Levitt and Hendrickson-Konnert least-squares methods, leading to a final residual error of 0.257 by the Jack-Levitt approach (0.211 for two-sigma data) or 0.248 by the Hendrickson-Konnert approach, with no significant difference between refined structures. The netropsin molecule displaces the spine of hydration and fits snugly within the minor groove in the A-A-T-T center. It widens the groove slightly and bends the helix axis back by 8 degrees, but neither unwinds nor elongates the double helix. The drug molecule is held in place by amide NH hydrogen bonds that bridge adenine N-3 and thymine O-2 atoms, exactly as with the spine of hydration. The requirement of A X T base-pairs in the binding site arises because the N-2 amino group of guanine would demand impermissibly close contacts with netropsin. It is proposed that substitution of imidazole for pyrrole in netropsin should create a family of "lexitropsins" capable of reading G X C-containing base sequences.  相似文献   
20.
A new model for DNA containing A.T and I.C base pairs.   总被引:5,自引:2,他引:5       下载免费PDF全文
DNA polymers containing exclusively A.T or I.C base pairs frequently exhibit D- or E-type X-ray diffraction patterns when dried. The distribution of intensities in fiber patterns appears to demand helical structures with 7 and 7.5 bp/turn, respectively, but it is not stereochemically possible to wind a right-handed antiparallel B-family helix this tightly. It is a simple matter, however, to build a left-handed helix with 7-7.5 bp/turn by incorporating Hoogsteen pairing into a Z helix framework. X-ray intensities calculated from this novel left-handed Hoogsteen model provide as reasonable a fit to the D-DNA diffraction pattern as do intensities calculated from previously proposed right-handed 8-fold models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号