首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   22篇
  238篇
  2024年   1篇
  2023年   1篇
  2021年   6篇
  2020年   8篇
  2019年   8篇
  2018年   6篇
  2017年   5篇
  2016年   9篇
  2015年   11篇
  2014年   8篇
  2013年   4篇
  2012年   13篇
  2011年   15篇
  2010年   10篇
  2009年   8篇
  2008年   12篇
  2007年   8篇
  2006年   6篇
  2005年   8篇
  2004年   5篇
  2003年   15篇
  2002年   7篇
  2001年   2篇
  2000年   9篇
  1999年   9篇
  1998年   8篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1982年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1971年   2篇
  1965年   1篇
排序方式: 共有238条查询结果,搜索用时 0 毫秒
231.
232.
The role of volatile stimuli in the long-range host-searching behaviour of the specialist parasitoidCotesia rubecula Marshall (Hymenoptera: Braconidae) was studied. Components from the plant-host-complex Brussels sprouts (Brassica oleracea L. var.gemmifera (DC.) Schulz. cv. ‘Titurel’)-Pieris rapae L. (Lepidoptera: Pieridae) were compared for their attractiveness in dual choice tests in a windtunnel. Stimuli from cabbage plants that were mechanically damaged or damaged byP. rapae caterpillars were more attractive to this parasitoid species than stimuli emitted by the host larvae or their faeces. Parasitoids preferred leaves from the plant-host-complex over artificially damaged leaves. Undamaged cabbage plants were the least attractive to the foraging females. These results indicate that in-flight searching behaviour ofC. rubecula is guided by plant-derived information and that for this specialist species more reliable and specific host-derived cues play a minor role at longer distances.  相似文献   
233.
234.
  1. Plants interact with various organisms, aboveground as well as belowground. Such interactions result in changes in plant traits with consequences for members of the plant‐associated community at different trophic levels. Research thus far focussed on interactions of plants with individual species. However, studying such interactions in a community context is needed to gain a better understanding.
  2. Members of the aboveground insect community induce defences that systemically influence plant interactions with herbivorous as well as carnivorous insects. Plant roots are associated with a community of plant‐growth promoting rhizobacteria (PGPR). This PGPR community modulates insect‐induced defences of plants. Thus, PGPR and insects interact indirectly via plant‐mediated interactions.
  3. Such plant‐mediated interactions between belowground PGPR and aboveground insects have usually been addressed unidirectionally from belowground to aboveground. Here, we take a bidirectional approach to these cross‐compartment plant‐mediated interactions.
  4. Recent studies show that upon aboveground attack by insect herbivores, plants may recruit rhizobacteria that enhance plant defence against the attackers. This rearranging of the PGPR community in the rhizosphere has consequences for members of the aboveground insect community. This review focusses on the bidirectional nature of plant‐mediated interactions between the PGPR and insect communities associated with plants, including (a) effects of beneficial rhizobacteria via modification of plant defence traits on insects and (b) effects of plant defence against insects on the PGPR community in the rhizosphere. We discuss how such knowledge can be used in the development of sustainable crop‐protection strategies.
  相似文献   
235.
 It is commonly accepted that larger visual objects are represented in the cerebral cortex by specific spatial patterns of neuronal activity. Self-organization is a key concept in the different explanations of such neuronal representations. We here propose as a hypothesis that fast cortical selection (FCS) is an intrinsic functional element of cortical self-organization during perception. Selection is a central concept in theoretical biology which has proved its explanatory power in different fields of our natural and cultural world. The central element in the cortical selection process is the pyramidal cell with its two types of excitatory input. In primary cortical areas one of these inputs comes from any of the sensory organs, determining the topological and typological receptive field properties of the cell and also driving it directly. The other type of input connects reciprocally neighbouring pyramidal cells by axon collaterals and only facilitates the driving input. These two functionally different inputs constitute the elementary selection system working by iterative mutual facilitation as a biological algorithm. A short simulation, based entirely on such biological facts, illustrates the dynamic of this selection process: the activity of cells responding better to the external stimulus ‘grow and survive’ the stimulation, whereas less responsive cells decrease their activity due to competition. Received: 13 June 1995 / Accepted in revised form: 27 May 1997  相似文献   
236.
237.
Herbivore-induced plant defences influence the behaviour of herbivores as well as that of their natural enemies. Jasmonic acid is one of the key hormones involved in both these direct and indirect induced defences. Jasmonic acid treatment of plants changes the composition of defence chemicals in the plants, induces volatile emission, and increases the production of extrafloral nectar. However, few studies have addressed the potential influence of induced defences on flower nectar chemistry and pollinator behaviour. These have shown that herbivore damage can affect pollination rates and plant fitness. Here, we have investigated the effect of jasmonic acid treatment on floral nectar production and the attraction of pollinators, as well as the effect on the behaviour of an herbivore and its natural enemy. The study system consisted of black mustard plants, Brassica nigra L. (Brassicaceae), pollinators of Brassica nigra (i.e., honeybees and syrphid flies), a specialist herbivore, Pieris rapae L. (Lepidoptera: Pieridae), and a parasitoid wasp that uses Pieris larvae as hosts, Cotesia glomerata L. (Hymenoptera: Braconidae). We show that different trophic levels are differentially affected by jasmonic acid-induced changes. While the herbivore prefers control leaves over jasmonic acid-treated leaves for oviposition, the parasitoid C. glomerata is more attracted to jasmonic acid-treated plants than to control plants. We did not observe differences in pollinator preference, the rates of flower visitation by honeybees and syrphid flies were similar for control and jasmonic acid-treated plants. Plants treated with jasmonic acid secreted less nectar than control plants and the concentrations of glucose and fructose tended to be lower than in nectar from control plants. Jasmonic acid treatment resulted in a lower nectar production than actual feeding damage by P. rapae caterpillars.  相似文献   
238.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号