全文获取类型
收费全文 | 1787篇 |
免费 | 167篇 |
国内免费 | 2篇 |
专业分类
1956篇 |
出版年
2023年 | 9篇 |
2022年 | 10篇 |
2021年 | 26篇 |
2020年 | 28篇 |
2019年 | 17篇 |
2018年 | 21篇 |
2017年 | 23篇 |
2016年 | 37篇 |
2015年 | 61篇 |
2014年 | 66篇 |
2013年 | 96篇 |
2012年 | 119篇 |
2011年 | 109篇 |
2010年 | 67篇 |
2009年 | 75篇 |
2008年 | 100篇 |
2007年 | 86篇 |
2006年 | 89篇 |
2005年 | 81篇 |
2004年 | 76篇 |
2003年 | 71篇 |
2002年 | 68篇 |
2001年 | 29篇 |
2000年 | 34篇 |
1999年 | 43篇 |
1998年 | 34篇 |
1997年 | 22篇 |
1996年 | 17篇 |
1995年 | 18篇 |
1994年 | 17篇 |
1993年 | 21篇 |
1992年 | 22篇 |
1991年 | 11篇 |
1990年 | 22篇 |
1989年 | 23篇 |
1988年 | 23篇 |
1987年 | 22篇 |
1986年 | 17篇 |
1985年 | 21篇 |
1984年 | 14篇 |
1983年 | 11篇 |
1982年 | 9篇 |
1980年 | 14篇 |
1979年 | 15篇 |
1978年 | 8篇 |
1977年 | 10篇 |
1976年 | 9篇 |
1975年 | 9篇 |
1974年 | 9篇 |
1970年 | 8篇 |
排序方式: 共有1956条查询结果,搜索用时 15 毫秒
21.
Mobile elements rely on cellular processes to replicate, and therefore, mobile element proteins frequently interact with a variety of cellular factors. The integrase (IN) encoded by the retrotransposon Ty5 interacts with the heterochromatin protein Sir4, and this interaction determines Ty5's preference to integrate into heterochromatin. We explored the hypothesis that Ty5's targeting mechanism arose by mimicking an interaction between Sir4 and another cellular protein(s). Mutational analyses defined the requirements for the IN-Sir4 interaction, providing criteria to screen for cellular analogues. Esc1, a protein associated with the inner nuclear membrane, interacted with the same domain of Sir4 as IN, and 75% of mutations that disrupted IN-Sir4 interactions also abrogated Esc1-Sir4 interactions. A small motif critical for recognizing Sir4 was identified in Esc1. The functional equivalency of this motif and the Sir4-interacting domain of IN was demonstrated by swapping these motifs and showing that the chimeric IN and Esc1 proteins effectively target integration and partition DNA, respectively. We conclude that Ty5 targets integration by imitating the Esc1-Sir4 interaction and suggest molecular mimicry as a general mechanism that enables mobile elements to interface with cellular processes. 相似文献
22.
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the reversible intramolecular nucleophilic displacement of a halogen by a hydroxyl group in vicinal haloalcohols, producing the corresponding epoxides. The enzyme displays high enantioselectivity toward some aromatic halohydrins. To understand the kinetic mechanism and enantioselectivity of the enzyme, steady-state and pre-steady-state kinetic analysis was performed with p-nitro-2-bromo-1-phenylethanol (PNSHH) as a model substrate. Steady-state kinetic analyses indicated that the k(cat) of the enzyme with the (R)-enantiomer (22 s(-1)) is 3-fold higher than with the (S)-enantiomer and that the K(m) for the (R)-enantiomer (0.009 mM) is about 45-fold lower than that for the (S)-enantiomer, resulting in a high enantiopreference for the (R)-enantiomer. Product inhibition studies revealed that HheC follows an ordered Uni Bi mechanism for both enantiomers, with halide as the first product to be released. To identify the rate-limiting step in the catalytic cycle, pre-steady-state experiments were performed using stopped-flow and rapid-quench methods. The results revealed the existence of a pre-steady-state burst phase during conversion of (R)-PNSHH, whereas no such burst was observed with the (S)-enantiomer. This indicates that a product release step is rate-limiting for the (R)-enantiomer but not for the (S)-enantiomer. This was further examined by doing single-turnover experiments, which revealed that during conversion of the (R)-enantiomer the rate of bromide release is 21 s(-1). Furthermore, multiple turnover analyses showed that the binding of (R)-PNSHH is a rapid equilibrium step and that the rate of formation of product ternary complex is 380 s(-1). Taken together, these findings enabled the formulation of an ordered Uni Bi kinetic mechanism for the conversion of (R)-PNSHH by HheC in which all of the rate constants are obtained. The high enantiopreference for the (R)-enantiomer can be explained by weak substrate binding of the (S)-enantiomer and a lower rate of reaction at the active site. 相似文献
23.
Summary Ventral thoracic neurosecretory cells (VTNCs) of the blowflies, Calliphora erythrocephala and C. vomitoria, innervating thoracic neuropil and the dorsal neural sheath of the thoracico-abdominal ganglion have been shown to be immunoreactive to a variety of mammalian peptide antisera. In the neural sheath the VTNC terminals form an extensive neurohaemal network that is especially dense over the abdominal ganglia. The same areas are invaded by separate, ut overlapping serotonin-immunoreactive (5-HT-IR) projections derived from neuronal cell bodies in the suboesophageal ganglion. Immunocytochemical studies with different antisera, applied to adjacent sections at the lightmicroscopic level, combined with extensive cross-absorption tests, suggest that the perikarya of the VTNCs contain co-localized peptides related to gastrin/cholecystokinin (CCK), bovine pancreatic polypeptide (PP), Met- and Leuenkephalin and Met-enk-Arg6-Phe7 (Met-enk-RF). Electron-microscopic immunogold-labeling shows that some of the terminals in the dorsal sheath react with several of the individual peptide antisera, whilst others with similar cytology are non-immunoreactive. In the same region, separate terminals with different cytological characteristics contain 5-HT-IR. Both 5-HT-IR and peptidergic terminals are localized outside the cellular perineurium beneath the acellular permeable sheath adjacent to the haemocoel. Hence, we propose that various bioactive substances may be released from thoracic neurosecretory neurons into the circulating haemolymph to act on peripheral targets. The same neurons may also interact by synaptic or modulatory action in the CNS in different neuropil regions of the thoracic ganglion. 相似文献
24.
Beejan Asady Claudia F. Dick Karen Ehrenman Tejram Sahu Julia D. Romano Isabelle Coppens 《PLoS pathogens》2020,16(12)
Inorganic ions such as phosphate, are essential nutrients required for a broad spectrum of cellular functions and regulation. During infection, pathogens must obtain inorganic phosphate (Pi) from the host. Despite the essentiality of phosphate for all forms of life, how the intracellular parasite Toxoplasma gondii acquires Pi from the host cell is still unknown. In this study, we demonstrated that Toxoplasma actively internalizes exogenous Pi by exploiting a gradient of Na+ ions to drive Pi uptake across the plasma membrane. The Na+-dependent phosphate transport mechanism is electrogenic and functionally coupled to a cipargarmin sensitive Na+-H+-ATPase. Toxoplasma expresses one transmembrane Pi transporter harboring PHO4 binding domains that typify the PiT Family. This transporter named TgPiT, localizes to the plasma membrane, the inward buds of the endosomal organelles termed VAC, and many cytoplasmic vesicles. Upon Pi limitation in the medium, TgPiT is more abundant at the plasma membrane. We genetically ablated the PiT gene, and ΔTgPiT parasites are impaired in importing Pi and synthesizing polyphosphates. Interestingly, ΔTgPiT parasites accumulate 4-times more acidocalcisomes, storage organelles for phosphate molecules, as compared to parental parasites. In addition, these mutants have a reduced cell volume, enlarged VAC organelles, defects in calcium storage and a slightly alkaline pH. Overall, these mutants exhibit severe growth defects and have reduced acute virulence in mice. In survival mode, ΔTgPiT parasites upregulate several genes, including those encoding enzymes that cleave or transfer phosphate groups from phosphometabolites, transporters and ions exchangers localized to VAC or acidocalcisomes. Taken together, these findings point to a critical role of TgPiT for Pi supply for Toxoplasma and also for protection against osmotic stresses. 相似文献
25.
Sigrid D. Roosendaal Jan M. Van Doorn Karine M. Valentijn Dick J. Van der Horst Kees W. Rodenburg 《Insect biochemistry and molecular biology》2009,39(2):135-144
The insect lipophorin receptor (LpR), an LDL receptor (LDLR) homologue that is expressed during restricted periods of insect development, binds and endocytoses high-density lipophorin (HDLp). However, in contrast to LDL, HDLp is not lysosomally degraded, but recycled in a transferrin-like manner, leaving a function of receptor-mediated uptake of HDLp to be uncovered. Since a hallmark of circulatory HDLp is its ability to function as a reusable shuttle that selectively loads and unloads lipids at target tissues without being endocytosed or degraded, circulatory HDLp can exist in several forms with respect to lipid loading. To investigate whether lipid content of the lipoprotein affects binding and subsequent endocytosis by LpR, HDLp was partially delipidated in vitro by incubation with α-cyclodextrin, yielding a particle of buoyant density 1.17 g/mL (HDLp-1.17). Binding experiments demonstrated that LpR bound HDLp-1.17 with a substantially higher affinity than HDLp both in LpR-transfected Chinese hamster ovary (CHO) cells and isolated insect fat body tissue endogenously expressing LpR. Similar to HDLp, HDLp-1.17 was targeted to the endocytic recycling compartment after endocytosis in CHO(LpR) cells. The complex of HDLp-1.17 and LpR appeared to be resistant to endosomal pH, as was recently demonstrated for the LpR–HDLp complex, corroborating that HDLp-1.17 is recycled similar to HDLp. This conclusion was further supported by the observation of a significant decrease with time of HDLp-1.17-containing vesicles after endocytosis of HDLp-1.17 in LpR-expressing insect fat body tissue. Collectively, our results indicate that LpR favors the binding and subsequent endocytosis of HDLp-1.17 over HDLp, suggesting a physiological role for LpR in selective endocytosis of relatively lipid-unloaded HDLp particles, while lipid reloading during their intracellular itinerary might result in decreased affinity for LpR and thus allows recycling. 相似文献
26.
Maristerra R. Lemes Christopher W. Dick Carlos Navarro Andrew J. Lowe Stephen Cavers Rogério Gribel 《Tropical plant biology》2010,3(1):40-49
Big-leaf mahogany (Swietenia macrophylla King) is one of the most valuable and overharvested timber trees of tropical America. In order to better characterize geographic patterns of genetic variation, we performed a phylogeographic analysis of S. macrophylla based on six polymorphic chloroplast genome simple sequence repeat loci (cpSSRs) analyzed in 16 populations (N?=?245 individuals) distributed across Central America and the Brazilian Amazon. Of the 31 total cpDNA haplotypes identified, 16 occurred in Central America and 15 in Amazonia with no single haplotype shared between the two regions. Populations from Central America showed moderate differentiation (F ST ?=?0.36) while within population genetic diversity was generally high (mean Nei’s H E ?=?0.639). In contrast, the Amazonian populations were strongly differentiated (F ST ?=?0.91) and contained relatively low genetic diversity (mean H E ?=?0.176), except for one highly diverse population (H E ?=?0.925) from eastern Amazonia. Spatial analysis of molecular variance (SAMOVA) identified a single Central American phylogroup and four Amazonian phylogroups, indicating stronger phylogeographic structure within Amazonia. The results demonstrate distinctive regional patterns of S. macrophylla differentiation, and the first evidence of a strong phylogeographic break between Central American and South American mahogany populations. We suggest that the frequent occurrence of hurricanes in Central America, the differences in the glacial histories and in the duration and intensity of anthropogenic disturbance during the late Holocene may have played important roles in the geographic structuring of cpDNA lineages in the two regions. The high private haplotype diversity in Brazilian populations suggests that cpSSRs can be used as DNA barcodes for regional timber certification. 相似文献
27.
28.
Christopher W. Dick Olivier J. Hardy F. Andrew Jones Rémy J. Petit 《Tropical plant biology》2008,1(1):20-33
Gene flow via seed and pollen is a primary determinant of genetic and species diversity in plant communities at different spatial scales. This paper reviews studies of gene flow and population genetic structure in tropical rain forest trees and places them in ecological and biogeographic context. Although much pollination is among nearest neighbors, an increasing number of genetic studies report pollination ranging from 0.5–14 km for canopy tree species, resulting in extensive breeding areas in disturbed and undisturbed rain forest. Direct genetic measures of seed dispersal are still rare; however, studies of fine scale spatial genetic structure (SGS) indicate that the bulk of effective seed dispersal occurs at local scales, and we found no difference in SGS (Sp statistic) between temperate (N?=?24 species) and tropical forest trees (N?=?15). Our analysis did find significantly higher genetic differentiation in tropical trees (F ST?=?0.177; N?=?42) than in temperate forest trees (F ST?=?0.116; N?=?82). This may be due to the fact that tropical trees experience low but significant rates of self-fertilization and bi-parental inbreeding, whereas half of the temperate tree species in our survey are wind pollinated and are more strictly allogamous. Genetic drift may also be more pronounced in tropical trees due to the low population densities of most species. 相似文献
29.
Multicenter evaluation of reverse line blot assay for detection of drug resistance in Mycobacterium tuberculosis clinical isolates 总被引:7,自引:0,他引:7
Mokrousov I Bhanu NV Suffys PN Kadival GV Yap SF Cho SN Jordaan AM Narvskaya O Singh UB Gomes HM Lee H Kulkarni SP Lim KC Khan BK van Soolingen D Victor TC Schouls LM 《Journal of microbiological methods》2004,57(3):323-335
A multicenter study was conducted with the objective to evaluate a reverse line blot (RLB) assay to detect resistance to rifampin (RIF), isoniazid (INH), streptomycin (STR), and ethambutol (EMB) in clinical isolates of Mycobacterium tuberculosis. Oligonucleotides specific for wild type and mutant (drug resistance linked) alleles of the selected codons in the genes rpoB, inhA, ahpC, rpsL, rrs, embB, were immobilized on a nylon membrane. The RLB assay conditions were optimized following analysis of DNA samples with known sequences of the targeted genes. For validation of the method at different geographical locations, the membranes were sent to seven laboratories in six countries representing the regions with high burdens of multudrug-resistant tuberculosis. The reproducibility of the assay for detection of rpoB genotypes was initially evaluated on a blinded set of twenty reference DNA samples with known allele types and overall concordant results were obtained. Further mutation analysis was performed by each laboratory on the local strains. Upon RLB analysis of 315 clinical isolates from different countries, 132 (85.2%) of 155 RIF-resistant and 28 (51.0%) of 55 EMB-resistant isolates were correctly identified, showing applicability of the assay when targeting the rpoB hot-spot region and embB306. Mutations in the inhA and ahpC promoter regions, conferring resistance to INH, were successfully identified in respectively 16.9% and 13.2% of INH-resistant strains. Likewise, mutations in rrs513 and rpsL88 that confer resistance to STR were identified in respectively 15.1% and 10.7% of STR-resistant strains. It should be mentioned that mutation analysis of the above targets usually requires rather costly DNA sequencing to which the proposed RLB assay presents rapid and inexpensive alternative. Furthermore, the proposed method requires the same simple equipment as that used for spoligotyping and permits simultaneous analysis of up to 40 samples. This technique is a first attempt to combine different targets in a single assay for prediction of antituberculosis drugs resistance. It is open to further development as it allows easy incorporation of new probes for detection of mutations in other genes associated with resistance to second-line (e.g., fluoroquinolones) and new antituberculosis compounds. 相似文献
30.
Moore CM Hubbard GB Dick E Dunn BG Raveendran M Rogers J Williams V Gomez JJ Butler SD Leland MM Schlabritz-Loutsevitch NE 《American journal of primatology》2007,69(10):1105-1118
Trisomy 13 in humans is the third most common autosomal abnormality at birth, after trisomy 21 and trisomy 18. It has a reported incidence of between 1:5,000 and 1:30,000 live births. It is associated with multiple abnormalities, many of which shorten lifespan. We describe here the first reported case of a baboon (Papio hamadryas) with trisomy of chromosome 17, which is homologous to human chromosome 13. The trisomic infant was born to a consanguineous pair of baboons and had morphological characteristics similar to those observed in human trisomy 13, including bilateral polydactyly in the upper limbs, a patent foramen ovale, and pyelectasis. Molecular DNA analysis using human chromosome 13 markers was consistent with the affected infant inheriting two copies of chromosome 17 derived from the same parental chromosome. This trisomy was, therefore, due to either an error in meiosis II or the result of postzygotic nondisjunction. The parental origin, however, could not be determined. 相似文献