首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   34篇
  641篇
  2023年   7篇
  2022年   7篇
  2021年   19篇
  2020年   15篇
  2019年   15篇
  2018年   28篇
  2017年   14篇
  2016年   20篇
  2015年   20篇
  2014年   40篇
  2013年   38篇
  2012年   34篇
  2011年   39篇
  2010年   17篇
  2009年   19篇
  2008年   24篇
  2007年   25篇
  2006年   27篇
  2005年   21篇
  2004年   24篇
  2003年   13篇
  2002年   17篇
  2001年   11篇
  2000年   26篇
  1999年   20篇
  1998年   10篇
  1997年   9篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   14篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1979年   3篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1966年   3篇
  1962年   2篇
  1961年   1篇
排序方式: 共有641条查询结果,搜索用时 15 毫秒
71.
It is becoming clearly evident that single gene or single environmental factor cannot explain susceptibility to diseases with complex etiology such as head and neck cancer. In this study, we applied the multifactor dimensionality reduction method to explore potential gene-environment and gene-gene interactions that may contribute to predisposition to head and neck cancer in the North Indian population. We genotyped 203 patients with head and neck cancer and 201 healthy controls for 13 functional polymorphisms in genes coding for tobacco metabolizing enzymes; CYP1A1, CYP2A13, GSTM1, and UGT1A7 using polymerase chain reaction-restriction fragment length polymorphism method, real-time polymerase chain reaction quantitative assay, and denaturing high-performance liquid chromatography followed by direct sequencing. We found that GSTM1 copy number variations were the most influential factor for head and neck cancer. We also observed significant gene-gene interactions among GSTM1 copy number variants, CYP1A1 T3801C and UGT1A7 T622C variants among smokers. Multifactor dimensionality reduction approach showed that the three-factor model, including smoking status, CYP1A1 T3801C, and GSTM1 copy number variants, conferred more than fourfold increased risk of head and neck cancer (odds ratio 4.89; 95% confidence interval: 3.15-7.32, p?相似文献   
72.
N. Panda  U. K. Misra 《Plant and Soil》1970,33(1-3):225-234
Summary To examine the possibility of minimising phosphate fixation the lateritic soil at various levels of liming was incubated with phosphate rock from U.A.R. acidulated to different degree viz. 0, 10, 20, 50, and 100 per cent both with phosphoric and nitric acid. The soil was incubated for 90 days on addition of different phosphate carriers at the rate of 100 ppm total P2O5 containing different proportion of water-soluble, citrate-soluble and insoluble phosphorus. Samples were drawn at an interval of 30 days. Bray's p1 and pH of the soil samples were measured. The dry-matter yield and uptake of phosphorus by two successive crops of maize grown in pots, the treatments being same as in incubation study, were well correlated with the Bray's p1. Ground rock phosphate and 10 per cent acidulated material were effective in minimising the fixation in soil of pH 4.0 whereas 50 per cent acidulation was suitable for soils of higher pHi.e. 5.6 and 6.5. H3PO4 acidulated material was proved superior to HNO3 acidulated product. The use of partially acidulated rock phosphate for acid soils may be recommended to receive economic return. Associate Professor Senior Research Assistant.  相似文献   
73.
Adenosine-5’-triphosphate (ATP) is an important phosphate metabolite abundantly found in Mycobacterium leprae bacilli. This pathogen does not derive ATP from its host but has its own mechanism for the generation of ATP. Interestingly, this molecule as well as several antigenic proteins act as bio-markers for the detection of leprosy. One such bio-marker is the 18 kDa antigen. This 18 kDa antigen is a small heat shock protein (HSP18) whose molecular chaperone function is believed to help in the growth and survival of the pathogen. But, no evidences of interaction of ATP with HSP18 and its effect on the structure and chaperone function of HSP18 are available in the literature. Here, we report for the first time evidences of “HSP18-ATP” interaction and its consequences on the structure and chaperone function of HSP18. TNP-ATP binding experiment and surface plasmon resonance measurement showed that HSP18 interacts with ATP with a sub-micromolar binding affinity. Comparative sequence alignment between M. leprae HSP18 and αB-crystallin identified the sequence 49KADSLDIDIE58 of HSP18 as the Walker-B ATP binding motif. Molecular docking studies revealed that β4-β8 groove/strands as an ATP interactive region in M. leprae HSP18. ATP perturbs the tertiary structure of HSP18 mildly and makes it less susceptible towards tryptic cleavage. ATP triggers exposure of additional hydrophobic patches at the surface of HSP18 and induces more stability against chemical and thermal denaturation. In vitro aggregation and thermal inactivation assays clearly revealed that ATP enhances the chaperone function of HSP18. Our studies also revealed that the alteration in the chaperone function of HSP18 is reversible and is independent of ATP hydrolysis. As the availability and binding of ATP to HSP18 regulates its chaperone function, this functional inflection may play an important role in the survival of M. leprae in hosts.  相似文献   
74.
Lovastatin, an inhibitor of HMG-CoA reductase, was produced by submerged fermentation using Monascus purpureus MTCC 369. Five nutritional parameters screened using Plackett–Burman experimental design were optimized by Box–Behnken factorial design of response surface methodology for lovastatin production in shake flask cultures. Maximum lovastatin production of 351 mg/l were predicted in medium containing 29.59 g/l dextrose, 3.86 g/l NH4Cl, 1.73 g/l KH2PO4, 0.86 g/l MgSO4·7H2O, and 0.19 g/l MnSO4·H2O using response surface plots and point prediction tool of DESIGN EXPERT 7.0 (Statease, USA) software.  相似文献   
75.
76.
A series of 2-hydroxy-aminoalkyl derivatives of diaryloxy methano phenanthrenes were synthesized from nucleophilic opening of oxirane with different amines. These compounds were evaluated for their antitubercular activity against Mycobacterium tuberculosis H(37)R(v) in vitro and showed MIC in the range of 3.12-25microg/ml.  相似文献   
77.
Gupta K  Bishop J  Peck A  Brown J  Wilson L  Panda D 《Biochemistry》2004,43(21):6645-6655
The antifungal agent benomyl [methyl-1-(butylcarbamoyl)-2-benzimidazolecarbamate] is used throughout the world against a wide range of agricultural fungal diseases. In this paper, we investigated the interaction of benomyl with mammalian brain tubulin and microtubules. Using the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulfonic acid, benomyl was found to bind to brain tubulin with a dissociation constant of 11.9 +/- 1.2 microM. Further, benomyl bound to at a novel site, distinct from the well-characterized colchicine and vinblastine binding sites. Benomyl altered the far-UV circular dichroism spectrum of tubulin and reduced the accessibility of its cysteine residues to modification by 5,5'-dithiobis-2-nitrobenzoic acid, indicating that benomyl binding to tubulin induces a conformational change in the tubulin. Benomyl inhibited the polymerization of brain tubulin into microtubules, with 50% inhibition occurring at a concentration of 70-75 microM. Furthermore, it strongly suppressed the dynamic instability behavior of individual brain microtubules in vitro as determined by video microscopy. It reduced the growing and shortening rates of the microtubules but did not alter the catastrophe or rescue frequencies. The unexpected potency of benomyl against mammalian microtubule polymerization and dynamics prompted us to investigate the effects of benomyl on HeLa cell proliferation and mitosis. Benomyl inhibited proliferation of the cells with an IC(50) of 5 microM, and it blocked mitotic spindle function by perturbing microtubule and chromosome organization. The greater than expected actions of benomyl on mammalian microtubules and mitosis together with its relatively low toxicity suggest that it might be useful as an adjuvant in cancer chemotherapy.  相似文献   
78.
Rathinasamy K  Panda D 《The FEBS journal》2006,273(17):4114-4128
We found that benomyl, a benzimidazole fungicide, strongly suppressed the reassembly of cold-depolymerized spindle microtubules in HeLa cells. Benomyl perturbed microtubule-kinetochore attachment and chromosome alignment at the metaphase plate. Benomyl also significantly decreased the distance between the sister kinetochore pairs in metaphase cells and increased the level of the checkpoint protein BubR1 at the kinetochore region, indicating that benomyl caused loss of tension across the kinetochores. In addition, benomyl decreased the intercentrosomal distance in mitotic HeLa cells and blocked the cells at mitosis. Further, we analyzed the effects of benomyl on the signal transduction pathways in relation to mitotic block, bcl2 phosphorylation and induction of apoptosis. The results suggest that benomyl causes loss of tension across the kinetochores, blocks the cell cycle progression at mitosis and subsequently, induces apoptosis through the bcl2-bax pathway in a manner qualitatively similar to the powerful microtubule targeted anticancer drugs like the vinca alkaloids and paclitaxel. Considering the very high toxicity of the potent anticancer drugs and the low toxicity of benomyl in humans, we suggest that benomyl could be useful as an adjuvant in combination with the powerful anticancer drugs in cancer therapy.  相似文献   
79.
Amaresh C. Panda 《FEBS letters》2010,584(6):1169-1173
Insulin is a secreted peptide that controls glucose homeostasis in mammals, and insulin biosynthesis is regulated by glucose at many levels. Rodent insulin is encoded by two non-allelic genes. We have identified a novel splice variant of the insulin2 gene in mice that constitutes about 75% of total insulin2 mRNA. The alternate splicing does not alter the ORF but reduces the 5′UTR by 12 bases. A reporter gene containing the novel short 5′UTR, is more efficiently expressed in cells, suggesting that alternative splicing of insulin mRNA in mice could result in an additional level of regulation in insulin biosynthesis.  相似文献   
80.
The circadian system in higher organisms temporally orchestrates rhythmic changes in a vast number of genes and gene products in different organs. Complex interactions between these components, both within and among cells, ultimately lead to rhythmic behavior and physiology. Identifying the plethora of circadian targets and mapping their interactions with one another is therefore essential to comprehend the molecular mechanisms of circadian regulation. The emergence of new technology for unbiased identification of biomolecules and for mapping interactions at the genome-wide scale is offering powerful tools to decipher the regulatory networks underpinning circadian rhythms. In this review, the authors discuss the potential application of these genome-wide approaches in the study of circadian rhythms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号