首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   37篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   8篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   7篇
  2010年   5篇
  2009年   6篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1977年   2篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
91.
We surveyed nucleotide sequence variation at glucose dehydrogenase (Gld), in a region of low recombination on chromosome 3R, from a population sample of Drosophila simulans. The levels of nucleotide variation were surprisingly high. There was no departure from the expectation of a neutral model for the level of polymorphism, indicating no evidence of a selective sweep in this region. There was a significant deficiency of singleton polymorphisms according to the Fu and Li test, although Tajima and Hudson, Kreitman, and Aguade (HKA) tests do not provide evidence of a significant elevation of variation due to balancing selection. Genetic map data for the D. simulans third chromosome were used to calculate expected values of pi for Gld under a current model of background selection, varying the values for the parameter sh (selection coefficient against deleterious mutations). We show that the recombinational landscape of D. simulans is sufficiently different from that of D. melanogaster that we expect higher variation under the background selection model, even when effective population sizes are assumed to be equal. The data for Gld were tested against the predictions using computer simulations of the distribution of the number of segregating sites conditioned on pi. Background selection alone can explain our observations as long as sh is larger than 0.005 and species-level effective population size is assumed to be several- fold larger than in D. melanogaster. Alternatively, the deleterious mutation rate may be smaller in D. simulans, or balancing selection may be acting nearby, thereby reducing the effect of background selection.   相似文献   
92.
Comparative evolutionary analysis of rDNA ITS regions in Drosophila   总被引:17,自引:2,他引:15  
The internal transcribed spacer (ITS) of the ribosomal DNA is generally considered to be under low functional constraint, and it is therefore often treated as a typical nonfunctional spacer sequence. We have analyzed the ITS regions of five species from the Drosophila melanogaster subgroup, two Drosophila species from outside this group (D. pseudoobscura and D. virilis), as well as from the more distantly related dipteran fly Musca domestica. The sequence comparisons show a distinctive conservation/divergence pattern, indicating that some regions are more conserved than others. Moreover, secondary-structure calculations indicate several conserved structural elements within the ITS regions. On the other hand, a statistical test that allows us to estimate the fraction of sites that are not under selective constraint suggests that more than half of the spacer is apparently free to diverge and evolves with a rate that is close to the neutral rate of sequence evolution in Drosophila. The ITS sequences can be used to derive a molecular phylogeny for the species under study. We find that the ITS tree is largely in line with the so-far-known phylogeny of this group of species, with one difference. The species most distant within the D. melanogaster subgroup is D. yakuba, rather than D. orena, as is normally assumed.   相似文献   
93.
94.
The phospholipase C-catalysed breakdown of inositol-containing phospholipids is an important source of diacylglycerol in cells stimulated by several agonists. However, recent experimental evidence suggests that major phospholipids such as phosphatidylcholine may also be substrates of the phosphodiesteratic hydrolysis activated by hormones, growth factors and oncogene products. We show here that stimulation of muscarinic agonists activates the release of phosphocholine, which, along with diacylglycerol, is a metabolic product of phospholipase C-mediated hydrolysis of phosphatidylcholine. Fluoroaluminates mimic this muscarinic effect, strongly suggesting that carbachol-activated release of phosphocholine may be mediated by a guanine-nucleotide-binding protein. Evidence for this was obtained from experiments using permeabilized cells in which non-hydrolysable analogues of GTP activated phosphocholine release synergistically with carbachol.  相似文献   
95.

Background

Diets rich in whole grain are associated with several health benefits. Little is known however, about whole grain consumption patterns in Malaysia. The aim of this study was to assess whole grain intakes and dietary source in Malaysian children and adolescents.

Methods

This analysis is from the MyBreakfast study, a national cross sectional study investigating eating habits among primary and secondary school children throughout Malaysia, conducted in 2013. Children (n = 5,165) and adolescents (n = 2,947) who completed two days of dietary assessment using a food record or recall respectively were included. The whole grain content of foods was estimated mainly through the use of quantitative ingredient declarations on food labels. All wholegrain foods were considered irrespective of the amount of whole grain they contained.

Results

Overall, only 25% of children and 19% of adolescents were wholegrain consumers. Mean daily intakes in the total sample were 2.3g/d (SD 5.8g/d) in children and 1.7g/d (SD 4.7g/d) in adolescents and in the consumer’s only sample, mean intakes reached 9.1g/d (SD 8.6) and 9.2g/d (SD 7.1g/d) respectively. Wheat was the main grain source of whole grain while ready to eat breakfast cereals and hot cereals were the main food contributors. Less than 3% of the children and adolescents reached the US quantitative whole grain recommendation of 48g/day.

Conclusion

Whole grain is consumed by only a minority of Malaysian children and adolescents and even among consumers, intakes are well below recommendations. Efforts are needed to firstly understand the barriers to whole grain consumption among Malaysian children in order to design effective health promotion initiatives to promote an increase in whole grain consumption.  相似文献   
96.
97.

Background

Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and β to dendritic cell accumulation and maturation in response to cigarette smoke exposure.

Methods

Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1β blocking antibodies were used to study the importance of IL-1R1 and TLR4 to dendritic cell accumulation and activation.

Results

Acute and chronic cigarette smoke exposure led to increased frequency of lung dendritic cells. Accumulation and activation of dendritic cells was IL-1R1/IL-1α dependent, but TLR4- and IL-1β-independent. Corroborating the cellular data, expression of CCL20, a potent dendritic cells chemoattractant, was IL-1R1/IL-1α-dependent. Studies using IL-1R1 bone marrow-chimeric mice revealed the importance of IL-1R1 signaling on lung structural cells for CCL20 expression. Consistent with the importance of dendritic cells in T cell activation, we observed decreased CD4+ and CD8+ T cell activation in cigarette smoke-exposed IL-1R1-deficient mice.

Conclusion

Our findings convey the importance of IL-1R1/IL-1α to the recruitment and activation of dendritic cells in response to cigarette smoke exposure.  相似文献   
98.
Signal specificity of multifunctional enzymes is achieved through protein-protein interactions involving specific domains on scaffold proteins. p62 (also known as sequestosome 1) is such a scaffold protein that possesses PB1 and UBA domains, and the TRAF6 binding sequence. Proteins recruited to these domains enable p62 to integrate kinase-activated and ubiquitin-mediated signaling pathways. The biological function of p62 has been studied in diverse systems and processes such as osteoclastogenesis, inflammation, differentiation, neurotrophin biology and obesity. The availability of mice in which p62 has been genetically inactivated is providing new insight into the mechanism and function of p62 at a whole-organism level.  相似文献   
99.
Gene alterations in tumor cells that confer the ability to grow under nutrient- and mitogen-deficient conditions constitute a competitive advantage that leads to more-aggressive forms of cancer. The atypical protein kinase C (PKC) isoform, PKCζ, has been shown to interact with the signaling adapter p62, which is important for Ras-induced lung carcinogenesis. Here we show that PKCζ-deficient mice display increased Ras-induced lung carcinogenesis, suggesting a new role for this kinase as a tumor suppressor in vivo. We also show that Ras-transformed PKCζ-deficient lungs and embryo fibroblasts produced more interleukin-6 (IL-6), which we demonstrate here plays an essential role in the ability of Ras-transformed cells to grow under nutrient-deprived conditions in vitro and in a mouse xenograft system in vivo. We also show that PKCζ represses histone acetylation at the C/EBPβ element in the IL-6 promoter. Therefore, PKCζ, by controlling the production of IL-6, is a critical signaling molecule in tumorigenesis.  相似文献   
100.
Atypical protein kinase C (PKC) ζ is an important regulator of inflammation through activation of the nuclear factor-κB (NF-κB) pathway. Chromatin remodeling on pro-inflammatory genes plays a pivotal role in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced abnormal lung inflammation. However, the signaling mechanism whereby chromatin remodeling occurs in CS- and LPS-induced lung inflammation is not known. We hypothesized that PKCζ is an important regulator of chromatin remodeling, and down-regulation of PKCζ ameliorates lung inflammation by CS and LPS exposures. We determined the role and molecular mechanism of PKCζ in abnormal lung inflammatory response to CS and LPS exposures in PKCζ-deficient (PKCζ−/−) and wild-type mice. Lung inflammatory response was decreased in PKCζ−/− mice compared with WT mice exposed to CS and LPS. Moreover, inhibition of PKCζ by a specific pharmacological PKCζ inhibitor attenuated CS extract-, reactive aldehydes (present in CS)-, and LPS-mediated pro-inflammatory mediator release from macrophages. The mechanism underlying these findings is associated with decreased RelA/p65 phosphorylation (Ser311) and translocation of the RelA/p65 subunit of NF-κB into the nucleus. Furthermore, CS/reactive aldehydes and LPS exposures led to activation and translocation of PKCζ into the nucleus where it forms a complex with CREB-binding protein (CBP) and acetylated RelA/p65 causing histone phosphorylation and acetylation on promoters of pro-inflammatory genes. Taken together, these data suggest that PKCζ plays an important role in CS/aldehyde- and LPS-induced lung inflammation through acetylation of RelA/p65 and histone modifications via CBP. These data provide new insights into the molecular mechanisms underlying the pathogenesis of chronic inflammatory lung diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号