首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   809篇
  免费   81篇
  2022年   3篇
  2021年   12篇
  2020年   4篇
  2019年   7篇
  2018年   12篇
  2016年   11篇
  2015年   31篇
  2014年   24篇
  2013年   42篇
  2012年   54篇
  2011年   74篇
  2010年   42篇
  2009年   37篇
  2008年   49篇
  2007年   52篇
  2006年   47篇
  2005年   47篇
  2004年   42篇
  2003年   60篇
  2002年   51篇
  2001年   9篇
  2000年   4篇
  1999年   11篇
  1998年   6篇
  1997年   9篇
  1996年   10篇
  1995年   11篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   16篇
  1990年   10篇
  1989年   4篇
  1988年   4篇
  1987年   7篇
  1986年   7篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1977年   2篇
  1976年   7篇
  1975年   4篇
  1973年   2篇
  1972年   3篇
  1971年   3篇
  1969年   4篇
  1968年   3篇
排序方式: 共有890条查询结果,搜索用时 78 毫秒
151.

Background

Although it has long been appreciated that ovarian carcinoma subtypes (serous, clear cell, endometrioid, and mucinous) are associated with different natural histories, most ovarian carcinoma biomarker studies and current treatment protocols for women with this disease are not subtype specific. With the emergence of high-throughput molecular techniques, distinct pathogenetic pathways have been identified in these subtypes. We examined variation in biomarker expression rates between subtypes, and how this influences correlations between biomarker expression and stage at diagnosis or prognosis.

Methods and Findings

In this retrospective study we assessed the protein expression of 21 candidate tissue-based biomarkers (CA125, CRABP-II, EpCam, ER, F-Spondin, HE4, IGF2, K-Cadherin, Ki-67, KISS1, Matriptase, Mesothelin, MIF, MMP7, p21, p53, PAX8, PR, SLPI, TROP2, WT1) in a population-based cohort of 500 ovarian carcinomas that was collected over the period from 1984 to 2000. The expression of 20 of the 21 biomarkers differs significantly between subtypes, but does not vary across stage within each subtype. Survival analyses show that nine of the 21 biomarkers are prognostic indicators in the entire cohort but when analyzed by subtype only three remain prognostic indicators in the high-grade serous and none in the clear cell subtype. For example, tumor proliferation, as assessed by Ki-67 staining, varies markedly between different subtypes and is an unfavourable prognostic marker in the entire cohort (risk ratio [RR] 1.7, 95% confidence interval [CI] 1.2%–2.4%) but is not of prognostic significance within any subtype. Prognostic associations can even show an inverse correlation within the entire cohort, when compared to a specific subtype. For example, WT1 is more frequently expressed in high-grade serous carcinomas, an aggressive subtype, and is an unfavourable prognostic marker within the entire cohort of ovarian carcinomas (RR 1.7, 95% CI 1.2%–2.3%), but is a favourable prognostic marker within the high-grade serous subtype (RR 0.5, 95% CI 0.3%–0.8%).

Conclusions

The association of biomarker expression with survival varies substantially between subtypes, and can easily be overlooked in whole cohort analyses. To avoid this effect, each subtype within a cohort should be analyzed discretely. Ovarian carcinoma subtypes are different diseases, and these differences should be reflected in clinical research study design and ultimately in the management of ovarian carcinoma.  相似文献   
152.
A regiospecific synthesis of a series of 1-sulfonyl azepinoindoles as potent 5-HT6 ligands is reported.  相似文献   
153.
Radon decays to a long-lived isotope 210Pb with a half-life of about 22 years. Measuring concentrations of 210Pb in household dust could be an alternative method of determining indoor radon levels. This novel method for estimating long-term radon concentration was explored in over a hundred Canadian residential homes. The results demonstrate that 210Pb concentrations in household dust relate reasonably well to radon concentrations in homes.  相似文献   
154.
155.
Here we present the first data describing the behavior of common dolphins ( Delphinus sp.) in the Hauraki Gulf, New Zealand. Activity budgets are used to assess the effects of diel, season, depth, sea surface temperature, group size, and composition on dolphin behavior. Additionally, the presence/absence of Bryde's whale ( Balaenoptera brydei ) and Australasian gannet ( Morus serrator ) is examined in relation to dolphin behavior. Behavioral data were collected from 686 independent dolphin groups during boat-based surveys conducted between February 2002 and January 2005. Foraging (46.7%) and social (7.2%) were the most and least frequently observed behaviors, respectively. Travel (28.9%), mill (9.5%), and rest (7.7%) accounted for the remainder of the activity budget. Behavior varied seasonally, with the highest proportion of foraging and resting groups observed during the spring and autumn, respectively. Behavior also varied with water depth, with foraging animals observed in the deepest and resting groups recorded in the shallowest regions of the Hauraki Gulf. A correlation between group size and behavior was evident, although behavior did not vary with the composition of dolphin groups. Resting, milling, and socializing animals were more frequently observed in smaller group sizes. Foraging behavior was prevalent in both small and large group sizes, suggesting foraging plasticity exists within this population. Behavior differed between single- and multispecies groups, with foraging more frequent in multispecies groups. Resting, milling, or socializing was rarely observed in the presence of any associated species, indicating the primary mechanism for association is likely prey related.  相似文献   
156.
As part of our continuing efforts to identify therapeutics for CNS diseases, such as schizophrenia and Alzheimer’s disease (AD), we have been focused on the 5-HT6 receptor in an attempt to identify ligands as a potential treatment for cognitive dysfunction. Herein we report the identification of a novel series of 1-sulfonylindazole derivatives as potent and selective 5-HT6 antagonists. The synthesis and SAR of this class of compounds are reported. Several potent compounds in both binding and cyclase functional assays also display good selectivity, microsomal stability, solubility, and brain penetration as well as low cytochrome P450 inhibition. One compound exemplified in this series showed 24% oral bioavailability and in vivo efficacy in a NOR cognition model at 10 mg/kg following an oral administration in rats.  相似文献   
157.
Animal communication involves the transfer of information between a sender and one or more receivers. However, such interactions do not happen in a social vacuum; third parties are typically present, who can potentially eavesdrop upon or intervene in the interaction. The importance of such bystanders in shaping the outcome of communicative interactions has been widely studied in humans, but has only recently received attention in other animal species. Here, we studied bouts of infant crying among rhesus macaques (Macaca mulatta) in order to investigate how the presence of bystanders may affect the outcome of this signalling interaction between infants and mothers. It was hypothesized that, as crying is acoustically aversive, bystanders may be aggressive to the mother or the infant in order to bring the crying bout to a close. Consequently, it was predicted that mothers should acquiesce more often to crying if in the presence of potentially aggressive animals. In line with this prediction, it was found that mothers gave infants access to the nipple significantly more often when crying occurred in the presence of animals that posed a high risk of aggression towards them. Both mothers and infants tended to receive more aggression from bystanders during crying bouts than outside of this time, although such aggression was extremely rare and was received by less than half of the mothers and infants in the study. Mothers were also found to be significantly more aggressive to their infants while the latter were crying than outside of crying bouts. These results provide new insight into the complex dynamics of mother–offspring conflict, and indicate that bystanders may play an important role in shaping the outcome of signalling interactions between infants and their mothers.  相似文献   
158.
We evaluated a combined microscopic-molecular approach for the diagnosis of key strongylid infections in sheep using panels of well-defined control and test samples. The method established is based on the separation of nematode eggs from faecal samples using a salt flotation procedure, the extraction and column-purification of genomic DNA, followed by real-time PCR and melting-curve analysis. Specific and semi-quantitative amplification from (a minimum of 0.1-2.0 pg) genomic DNA of Haemonchus contortus, Teladorsagia circumcincta, Trichostrongylus spp., Cooperia oncophora, Oesophagostomum columbianum, Oesophagostomum venulosum or Chabertia ovina is achieved using a specific, forward oligonucleotide primer located in the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) together with a conserved reverse primer in the large subunit of rDNA. Using a panel of well-defined genomic DNA samples from eggs from sheep monospecifically infected with H. contortus or Te. circumcincta, there was a correlation between cycle threshold (Ct) values in the PCR and numbers of egg per gram of faeces, thus allowing the semi-quantitation of parasite DNA in faeces. The findings of the present study indicate that a microscopic-molecular approach provides a useful tool for diagnosis, for epidemiological and ecological surveys as well as for integration into parasite monitoring, drug resistance (i.e. ‘egg count reduction’) testing or control programmes, particularly following semi- or full-automation.  相似文献   
159.
A role for Wiskott-Aldrich syndrome protein (WASP) in chemotaxis to various agents has been demonstrated in monocyte-derived cell types. Although WASP has been shown to be activated by multiple mechanisms in vitro, it is unclear how WASP is regulated in vivo. A WASP biosensor (WASPbs), which uses intramolecular fluorescence resonance energy transfer to report WASP activation in vivo, was constructed, and following transfection of macrophages, activation of WASPbs upon treatment with colony-stimulating factor-1 (CSF-1) was detected globally as early as 30 s and remained localized to protrusive regions at later time points. Similar results were obtained when endogenous WASP activation was determined using conformation-sensitive antibodies. In vivo CSF-1-induced WASP activation was fully Cdc42-dependent. Activation of WASP in response to treatment with CSF-1 was also shown to be phosphatidylinositol 3-kinase-dependent. However, treatment with the Src family kinase inhibitors PP2 or SU6656 or disruption of the major tyrosine phosphorylation site of WASPbs (Y291F mutation) did not reduce the level of CSF-1-induced WASP activation. Our results indicate that WASP activation downstream of CSF-1R is phosphatidylinositol 3-kinase- and Cdc42-dependent consistent with an involvement of these molecules in macrophage migration. However, although tyrosine phosphorylation of WASP has been proposed to stimulate WASP activity, we found no evidence to indicate that this occurs in vivo.Macrophages, terminally differentiated cells of the mononuclear phagocytic lineage, are found throughout the body and play important roles in normal tissue development and immune defense. However, in certain circumstances, excessive recruitment of macrophages has been shown to participate in the progression of several diseases, inflammatory (rheumatoid arthritis) or metabolic (atherosclerosis), as well as in tumor progression (13). Importantly expression of colony-stimulating factor-1 (CSF-1),4 the most pleiotropic macrophage growth factor, has been correlated with the progression of these disease states (for a review, see Ref. 4). Inhibition of undesirable macrophage recruitment to specific sites in response to CSF-1 is therefore an attractive goal for therapies (5).In addition to stimulating survival, proliferation, and differentiation of monocytes and macrophages, CSF-1 is also a potent chemotactic factor inducing the migration of these cell types (for a review, see Ref. 4). CSF-1 stimulation leads to the rapid production of F-actin-rich protrusions and the spreading and migration of macrophages (4). All CSF-1 effects are mediated through its tyrosine kinase receptor (CSF-1R), which upon activation leads to phosphorylation of tyrosine residues in a number of signaling molecules. Downstream molecules essential for macrophage migration in response to CSF-1 include phosphatidylinositol 3-kinase (PI3K) isoforms β and δ (6, 7). PI3K may potentially regulate migration through the activation of guanine nucleotide exchange factor activity to Rac1 and Cdc42, which are required for CSF-1-elicited protrusions (8, 9) and chemotaxis (10). The major means by which Rac and Cdc42 regulate the Arp2/3 complex is through the Wiskott-Aldrich syndrome protein/Wiskott-Aldrich syndrome verprolin-homologous (WASP/WAVE) family of proteins (11). A Rac1-IRSp53-Abi1-WAVE2 complex has been shown to mediate CSF-1-induced macrophage motility (12, 13), and a unique role for WASP in macrophage chemotaxis to CSF-1, formylmethionylleucylphenylalanine, MCP-1, and MIP-1α has been demonstrated (14, 15). WASP is a hematopoietic cell-specific regulator of Arp2/3-dependent actin remodeling. The catalytically active domain of WASP lies in its C terminus, which is conserved among all WASP/WAVE proteins and contains a VCA (verprolin homology, cofilin-like, and acidic region) domain capable of activating the Arp2/3 complex. The other domains found in WASP can regulate, directly or indirectly, the activity of its VCA domain (for a review, see Ref. 16). Both WASP and N-WASP bind activated Cdc42 through their GTPase-binding domain, which is believed to cause a structural transition that results in dissociation of the intramolecular contacts leaving the VCA domain accessible for Arp2/3 binding (17, 18). In addition, biochemical studies have revealed that several signaling molecules, including WASP-interacting SH3 protein, WASP-interacting protein, Grb2, phosphoinositides, and Src family kinases, activate N-WASP (for reviews, see Refs. 16 and 19). Phosphorylation of WASP has also been proposed to activate Arp2/3-mediated actin polymerization in vitro (2022).Recently different probes have been developed that detect a conformational change in N-WASP and therefore reflect its activation (2325). Using either a fluorescence resonance energy transfer (FRET)-based biosensor that detects a conformational change in N-WASP (23, 24) or antibodies that can only bind to the open conformation of N-WASP (25), N-WASP has been shown to be activated in response to epidermal growth factor in HEK293 cells and in MTLn3 carcinoma cells. This activity has been temporally localized to subcellular compartments important for carcinoma cell chemotaxis and invasion (24). We have adapted these approaches to explore the signal transduction pathways responsible for the activation of WASP in vivo.  相似文献   
160.
The malarial parasite Plasmodium falciparum (Pf) lacks the de novo pathway and relies on the salvage enzyme, hypoxanthine–guanine–xanthine phosphoribosyltransferase (HGXPRT), for the synthesis of the 6-oxopurine nucleoside monophosphates. Specific acyclic nucleoside phosphonates (ANPs) inhibit PfHGXPRT and possess anti-plasmodial activity. Two series of novel branched ANPs derived from 9-[2-(2-phosphonoethoxy)ethyl]purines were synthesized to investigate their inhibition of PfHGXPRT and human HGPRT. The best inhibitor of PfHGXPRT has a Ki of 1 μM. The data showed that both the position and nature of the hydrophobic substituent change the potency and selectivity of the ANPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号