首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   863篇
  免费   47篇
  2021年   10篇
  2020年   4篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   14篇
  2015年   28篇
  2014年   34篇
  2013年   34篇
  2012年   51篇
  2011年   44篇
  2010年   24篇
  2009年   26篇
  2008年   39篇
  2007年   39篇
  2006年   41篇
  2005年   46篇
  2004年   58篇
  2003年   35篇
  2002年   30篇
  2001年   26篇
  2000年   23篇
  1999年   10篇
  1998年   13篇
  1997年   7篇
  1996年   10篇
  1995年   10篇
  1994年   10篇
  1993年   4篇
  1992年   13篇
  1991年   16篇
  1990年   18篇
  1989年   12篇
  1988年   16篇
  1987年   16篇
  1986年   14篇
  1985年   17篇
  1984年   7篇
  1983年   10篇
  1982年   6篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1976年   11篇
  1975年   7篇
  1974年   6篇
  1973年   6篇
  1966年   4篇
排序方式: 共有910条查询结果,搜索用时 15 毫秒
21.
Low pH is a well known sensory irritant in pathological conditions such as inflammation. The mechanisms underlying this low pH effect were therefore studied in the guinea pig. Acid exposure caused marked nasal irritation via a specific subset of sensory nerves sensitive to capsaicin. Furthermore, acid caused bronchoconstriction via release of neuropeptides from capsaicin sensitive afferents. Interestingly, capsazepine, a recently developed competitive capsaicin receptor antagonist, selectively inhibited these responses to low pH. Ruthenium red, which blocks the cation channel associated with the capsaicin receptor, had effects similar to those of capsazepine. Therefore, acid irritation of the airway mucosa may involve capsaicin-receptor mechanisms and capsazepine represents a novel protective agent.  相似文献   
22.
23.
Pathogen‐mediated balancing selection is commonly considered to play an important role in the maintenance of genetic diversity, in particular in immune genes. However, the factors that may influence which immune genes are the targets of such selection are largely unknown. To address this, here we focus on Pattern Recognition Receptor (PRR) signalling pathways, which play a key role in innate immunity. We used whole‐genome resequencing data from a population of bank voles (Myodes glareolus) to test for associations between balancing selection, pleiotropy and gene function in a set of 123 PRR signalling pathway genes. To investigate the effect of gene function, we compared genes encoding (a) receptors for microbial ligands versus downstream signalling proteins, and (b) receptors recognizing components of microbial cell walls, flagella and capsids versus receptors recognizing features of microbial nucleic acids. Analyses based on the nucleotide diversity of full coding sequences showed that balancing selection primarily targeted receptor genes with a low degree of pleiotropy. Moreover, genes encoding receptors recognizing components of microbial cell walls etc. were more important targets of balancing selection than receptors recognizing nucleic acids. Tests for localized signatures of balancing selection in coding and noncoding sequences showed that such signatures were mostly located in introns, and more evenly distributed among different functional categories of PRR pathway genes. The finding that signatures of balancing selection in full coding sequences primarily occur in receptor genes, in particular those encoding receptors for components of microbial cell walls etc., is consistent with the idea that coevolution between hosts and pathogens is an important cause of balancing selection on immune genes.  相似文献   
24.
25.
26.
27.
Many marine invertebrates have planktonic larvae with cilia used for both propulsion and capturing of food particles. Hence, changes in ciliary activity have implications for larval nutrition and ability to navigate the water column, which in turn affect survival and dispersal. Using high-speed high-resolution microvideography, we examined the relationship between swimming speed, velar arrangements, and ciliary beat frequency of freely swimming veliger larvae of the gastropod Crepidula fornicata over the course of larval development. Average swimming speed was greatest 6 days post hatching, suggesting a reduction in swimming speed towards settlement. At a given age, veliger larvae have highly variable speeds (0.8–4 body lengths s−1) that are independent of shell size. Contrary to the hypothesis that an increase in ciliary beat frequency increases work done, and therefore speed, there was no significant correlation between swimming speed and ciliary beat frequency. Instead, there are significant correlations between swimming speed and visible area of the velar lobe, and distance between centroids of velum and larval shell. These observations suggest an alternative hypothesis that, instead of modifying ciliary beat frequency, larval C. fornicata modify swimming through adjustment of velum extension or orientation. The ability to adjust velum position could influence particle capture efficiency and fluid disturbance and help promote survival in the plankton.  相似文献   
28.
Artemisia annua is an important medicinal crop used for the production of the anti-malarial compound artemisinin. In order to assist in the production of affordable high quality artemisinin we have carried out an A. annua breeding programme aimed at improving artemisinin concentration and biomass. Here we report on a combining ability analysis of a diallel cross to identify robust parental lines for hybrid breeding. The parental lines were selected based on a range of phenotypic traits to encourage heterosis. The general combining ability (GCA) values for the diallel parental lines correlated to the positive alleles of quantitative trait loci (QTL) in the same parents indicating the presence of beneficial alleles that contribute to parental performance. Hybrids generated from crossing specific parental lines with good GCA were identified as having an increase in both artemisinin concentration and biomass when grown either in glasshouse or experimental field trials and compared to controls. This study demonstrates that combining ability as determined by a diallel cross can be used to identify elite parents for the production of improved A. annua hybrids. Furthermore, the selection of material for breeding using this approach was found to be consistent with our QTL-based molecular breeding approach.  相似文献   
29.
30.
There are two schools of thought regarding the cyclooxygenase (COX) isoform active in the vasculature. Using urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF and antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To address this question, we measured production of prostanoids, including 6-keto-PGF, by isolated vessels and in the circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how COX-2 protects the cardiovascular system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号