全文获取类型
收费全文 | 3673篇 |
免费 | 352篇 |
专业分类
4025篇 |
出版年
2022年 | 20篇 |
2021年 | 51篇 |
2020年 | 33篇 |
2019年 | 35篇 |
2018年 | 55篇 |
2017年 | 40篇 |
2016年 | 88篇 |
2015年 | 132篇 |
2014年 | 172篇 |
2013年 | 190篇 |
2012年 | 260篇 |
2011年 | 255篇 |
2010年 | 176篇 |
2009年 | 180篇 |
2008年 | 223篇 |
2007年 | 247篇 |
2006年 | 181篇 |
2005年 | 237篇 |
2004年 | 198篇 |
2003年 | 205篇 |
2002年 | 207篇 |
2001年 | 34篇 |
2000年 | 38篇 |
1999年 | 50篇 |
1998年 | 78篇 |
1997年 | 48篇 |
1996年 | 43篇 |
1995年 | 40篇 |
1994年 | 47篇 |
1993年 | 35篇 |
1992年 | 24篇 |
1991年 | 25篇 |
1990年 | 33篇 |
1989年 | 33篇 |
1988年 | 24篇 |
1987年 | 26篇 |
1986年 | 18篇 |
1985年 | 17篇 |
1984年 | 20篇 |
1983年 | 26篇 |
1982年 | 23篇 |
1981年 | 21篇 |
1980年 | 25篇 |
1979年 | 15篇 |
1978年 | 11篇 |
1977年 | 10篇 |
1975年 | 11篇 |
1974年 | 14篇 |
1973年 | 7篇 |
1969年 | 7篇 |
排序方式: 共有4025条查询结果,搜索用时 0 毫秒
51.
Thi Lien-Anh Nguyen Vanessa Fonseca Tumilasci Diane Singhroy Meztli Arguello John Hiscott 《Cellular microbiology》2009,11(6):889-897
Oncolytic viruses (OVs) represent an exciting new biological approach to cancer therapy. In particular, RNA viruses have emerged as potent agents for oncolytic virotherapy because of their capacity to specifically target and destroy tumour cells while sparing normal cells and tissues. Several barriers remain in the development of OV therapy, including poor penetration into the tumour mass, inefficient virus replication in primary cancers, and tumour-specific resistance to OV-mediated killing. The combination of OVs with cytotoxic agents, such as small molecule inhibitors of signalling or immunomodulators, as well as stealth delivery of therapeutic viruses have shown promise as novel experimental strategies to overcome resistance to viral oncolysis. These agents complement OV therapy by unblocking host pathways, delivering viruses with greater efficiency and/or increasing virus proliferation at the tumour site. In this review, we summarize recent development of these concepts, the potential obstacles, and future prospects for the clinical utilization of RNA OVs in cancer therapy. 相似文献
52.
Jagjeet S. Mnpotra Zhuanhong Qiao Jian Cai Diane L. Lynch Alan Grossfield Nicholas Leioatts Dow P. Hurst Michael C. Pitman Zhao-Hui Song Patricia H. Reggio 《The Journal of biological chemistry》2014,289(29):20259-20272
In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)- Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. 相似文献
53.
Randell T. Libby Katharine A. Hagerman Victor V. Pineda Rachel Lau Diane H. Cho Sandy L. Baccam Michelle M. Axford John D. Cleary James M. Moore Bryce L. Sopher Stephen J. Tapscott Galina N. Filippova Christopher E. Pearson Albert R. La Spada 《PLoS genetics》2008,4(11)
At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting “instability elements,” and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF—a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability. 相似文献
54.
Christopher?A?BidwellEmail author Lauren?N?Kramer Allison?C?Perkins Tracy?S?Hadfield Diane?E?Moody Noelle?E?Cockett 《BMC biology》2004,2(1):17
Background
The callipyge mutation is located within an imprinted gene cluster on ovine chromosome 18. The callipyge trait exhibits polar overdominant inheritance due to the fact that only heterozygotes inheriting a mutant paternal allele (paternal heterozygotes) have a phenotype of muscle hypertrophy, reduced fat and a more compact skeleton. The mutation is a single A to G transition in an intergenic region that results in the increased expression of several genes within the imprinted cluster without changing their parent-of-origin allele-specific expression. 相似文献55.
DeHaven-Hudkins DL Cowan A Cortes Burgos L Daubert JD Cassel JA DeHaven RN Kehner GB Kumar V 《Life sciences》2002,71(23):2787-2796
Loperamide and three of its analogs were evaluated for their ability to inhibit binding to cloned human opioid receptor subtypes and to produce antipruritis and antinociception following local s.c. administration to rodents. All four compounds were fully efficacious agonists with affinities of 2 to 4 nM for the cloned human mu opioid receptor. Local s.c. injection of loperamide, ADL 01-0001 or ADL 01-0002 at the same site as the introduction of the pruritogenic compound 48/80 resulted in antipruritic activity in a mouse model of itch. Similarly, i.paw or i.pl. administration of compounds ADL 01-0001, ADL 01-0002 and ADL 01-0003 to inflamed paws caused potent antinociception, inhibiting late phase formalin-induced flinching, Freund's adjuvant-induced mechanical hyperalgesia and tape stripping-induced mechanical hyperalgesia. Loperamide and its analogs were efficacious in animal models of itch and inflammatory pain, and may have potential therapeutic utility as antipruritic and antihyperalgesic agents. 相似文献
56.
Barriault D Lépine F Mohammadi M Milot S Leberre N Sylvestre M 《The Journal of biological chemistry》2004,279(46):47489-47496
2,2'-Dichlorobiphenyl (CB) is transformed by the biphenyl dioxygenase of Burkholderia xenovorans LB400 (LB400 BPDO) into two metabolites (1 and 2). The most abundant metabolite, 1, was previously identified as 2,3-dihydroxy-2'-chlorobiphenyl and was presumed to originate from the initial attack by the oxygenase on the chlorine-bearing ortho carbon and on its adjacent meta carbon of one phenyl ring. 2,3,2',3'-Tetrachlorobiphenyl is transformed by LB400 BPDO into two metabolites that had never been fully characterized structurally. We determined the precise identity of the metabolites produced by LB400 BPDO from 2,2'-CB and 2,3,2',3'-CB, thus providing new insights on the mechanism by which 2,2'-CB is dehalogenated to generate 2,3-dihydroxy-2'-chlorobiphenyl. We reacted 2,2'-CB with the BPDO variant p4, which produces a larger proportion of metabolite 2. The structure of this compound was determined as cis-3,4-dihydro-3,4-dihydroxy-2,2'-dichlorobiphenyl by NMR. Metabolite 1 obtained from 2,2'-CB-d(8) was determined to be a dihydroxychlorobiphenyl-d(7) by gas chromatographic-mass spectrometric analysis, and the observed loss of only one deuterium clearly shows that the oxygenase attack occurs on carbons 2 and 3. An alternative attack at the 5 and 6 carbons followed by a rearrangement leading to the loss of the ortho chlorine would have caused the loss of more than one deuterium. The major metabolite produced from catalytic oxygenation of 2,3,2',3'-CB by LB400 BPDO was identified by NMR as cis-4,5-dihydro-4,5-dihydroxy-2,3,2',3'-tetrachlorobiphenyl. These findings show that LB400 BPDO oxygenates 2,2'-CB principally on carbons 2 and 3 and that BPDO regiospecificity toward 2,2'-CB and 2,3,2,',3'-CB disfavors the dioxygenation of the chlorine-free ortho-meta carbons 5 and 6 for both congeners. 相似文献
57.
Stansfield SH Allen EE Dinnis DM Racher AJ Birch JR James DC 《Biotechnology and bioengineering》2007,97(2):410-424
In this study we have analyzed the dynamic covariation of the mammalian cell proteome with respect to functional phenotype during fed-batch culture of NS0 murine myeloma cells producing a recombinant IgG(4) monoclonal antibody. GS-NS0 cells were cultured in duplicate 10 L bioreactors (36.5 degrees C, 15% DOT, pH 7.0) for 335 h and supplemented with a continuous feed stream after 120 h. Cell-specific growth rate declined continuously after 72 h of culture. Cell-specific recombinant monoclonal antibody production rate (qP) varied sixfold through culture. Whilst qP correlated with relative recombinant heavy chain mRNA abundance up to 216 h, qP subsequently declined, independent of recombinant heavy chain or light chain mRNA abundance. GS-NS0 cultures were sampled at 48 h intervals between 24 and 264 h of culture for proteomic analyses. Total protein abundance and nascent polypeptide synthesis was determined by 2D PAGE of unlabeled proteins visualized by SYPRO Ruby and autoradiography of (35)S-labeled polypeptides, respectively. Covariation of nascent polypeptide synthesis and abundance with biomass-specific cell growth, glucose and glutamate consumption, lactate and Mab production rates were then examined using two partial least squares regression models. Most changes in polypeptide synthesis or abundance for proteins previously identified by mass spectrometry were positively correlated with biomass-specific growth rate. We conclude that the substantial transitions in cell physiology and qP that occur during culture utilize a relatively constant complement of the most abundant host cell machines that vary primarily with respect to induced changes in cell growth rate. 相似文献
58.
Lisa-Maree Gulino Diane Ouwerkerk Alicia Y. H. Kang Anita J. Maguire Marco Kienzle Athol V. Klieve 《PloS one》2013,8(4)
Twenty macropods from five locations in Queensland, Australia, grazing on a variety of native pastures were surveyed and the bacterial community of the foregut was examined using 454-amplicon pyrosequencing. Specifically, the V3/V4 region of 16S rRNA gene was examined. A total of 5040 OTUs were identified in the data set (post filtering). Thirty-two OTUs were identified as ‘shared’ OTUS (i.e. present in all samples) belonging to either Firmicutes or Bacteroidetes (Clostridiales/Bacteroidales). These phyla predominated the general microbial community in all macropods. Genera represented within the shared OTUs included: unclassified Ruminococcaceae, unclassified Lachnospiraceae, unclassified Clostridiales, Peptococcus sp. Coprococcus spp., Streptococcus spp., Blautia sp., Ruminoccocus sp., Eubacterium sp., Dorea sp., Oscillospira sp. and Butyrivibrio sp. The composition of the bacterial community of the foregut samples of each the host species (Macropus rufus, Macropus giganteus and Macropus robustus) was significantly different allowing differentiation between the host species based on alpha and beta diversity measures. Specifically, eleven dominant OTUs that separated the three host species were identified and classified as: unclassified Ruminococcaceae, unclassified Bacteroidales, Prevotella spp. and a Syntrophococcus sucromutans. Putative reductive acetogens and fibrolytic bacteria were also identified in samples. Future work will investigate the presence and role of fibrolytics and acetogens in these ecosystems. Ideally, the isolation and characterization of these organisms will be used for enhanced feed efficiency in cattle, methane mitigation and potentially for other industries such as the biofuel industry. 相似文献
59.
Yan-yiu Yu Chelsea Bahney Diane Hu Ralph S. Marcucio Theodore Miclau III 《Journal of visualized experiments : JoVE》2012,(62)
Assessing modes of skeletal repair is essential for developing therapies to be used clinically to treat fractures. Mechanical stability plays a large role in healing of bone injuries. In the worst-case scenario mechanical instability can lead to delayed or non-union in humans. However, motion can also stimulate the healing process. In fractures that have motion cartilage forms to stabilize the fracture bone ends, and this cartilage is gradually replaced by bone through recapitulation of the developmental process of endochondral ossification. In contrast, if a bone fracture is rigidly stabilized bone forms directly via intramembranous ossification. Clinically, both endochondral and intramembranous ossification occur simultaneously. To effectively replicate this process investigators insert a pin into the medullary canal of the fractured bone as described by Bonnarens4. This experimental method provides excellent lateral stability while allowing rotational instability to persist. However, our understanding of the mechanisms that regulate these two distinct processes can also be enhanced by experimentally isolating each of these processes. We have developed a stabilization protocol that provides rotational and lateral stabilization. In this model, intramembranous ossification is the only mode of healing that is observed, and healing parameters can be compared among different strains of genetically modified mice 5-7, after application of bioactive molecules 8,9, after altering physiological parameters of healing 10, after modifying the amount or time of stabilization 11, after distraction osteogenesis 12, after creation of a non-union 13, or after creation of a critical sized defect. Here, we illustrate how to apply the modified Ilizarov fixators for studying tibial fracture healing and distraction osteogenesis in mice. 相似文献
60.
The molecular scaffold kinase suppressor of Ras 1 is a modifier of RasV12-induced and replicative senescence 总被引:1,自引:0,他引:1 下载免费PDF全文
Kortum RL Johnson HJ Costanzo DL Volle DJ Razidlo GL Fusello AM Shaw AS Lewis RE 《Molecular and cellular biology》2006,26(6):2202-2214
In primary mouse embryo fibroblasts (MEFs), oncogenic Ras induces growth arrest via Raf/MEK/extracellular signal-regulated kinase (ERK)-mediated activation of the p19ARF/p53 and INK4/Rb tumor suppressor pathways. Ablation of these same pathways causes spontaneous immortalization in MEFs, and oncogenic transformation by Ras requires ablation of one or both of these pathways. We show that Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK cascade, is necessary for RasV12-induced senescence, and its disruption enhances primary MEF immortalization. RasV12 failed to induce p53, p19ARF, p16INK4a, and p15INK4b expression in KSR1-/- MEFs and increased proliferation instead of causing growth arrest. Reintroduction of wild-type KSR1, but not a mutated KSR1 construct unable to bind activated ERK, rescued RasV12-induced senescence. On continuous culture, deletion of KSR1 accelerated the establishment of spontaneously immortalized cultures and increased the proportion of cultures escaping replicative crisis. Despite enhancing escape from both RasV12-induced and replicative senescence, however, both primary and immortalized KSR1-/- MEFs are completely resistant to RasV12-induced transformation. These data show that escape from senescence is not necessarily a precursor for oncogenic transformation. Furthermore, these data indicate that KSR1 is a member of a unique class of proteins whose deletion blocks both senescence and transformation. 相似文献