首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5484篇
  免费   448篇
  国内免费   2篇
  5934篇
  2023年   43篇
  2022年   108篇
  2021年   178篇
  2020年   81篇
  2019年   100篇
  2018年   132篇
  2017年   99篇
  2016年   197篇
  2015年   297篇
  2014年   330篇
  2013年   392篇
  2012年   446篇
  2011年   479篇
  2010年   285篇
  2009年   254篇
  2008年   286篇
  2007年   314篇
  2006年   270篇
  2005年   235篇
  2004年   225篇
  2003年   195篇
  2002年   179篇
  2001年   45篇
  2000年   42篇
  1999年   46篇
  1998年   61篇
  1997年   47篇
  1996年   31篇
  1995年   39篇
  1994年   26篇
  1993年   28篇
  1992年   25篇
  1991年   28篇
  1990年   30篇
  1989年   25篇
  1988年   19篇
  1987年   10篇
  1985年   24篇
  1984年   22篇
  1983年   22篇
  1982年   18篇
  1981年   19篇
  1980年   24篇
  1979年   20篇
  1978年   25篇
  1977年   15篇
  1976年   10篇
  1974年   10篇
  1971年   9篇
  1970年   9篇
排序方式: 共有5934条查询结果,搜索用时 15 毫秒
21.
Maintaining physical connections between the nucleus and the cytoskeleton is important for many cellular processes that require coordinated movement and positioning of the nucleus. Nucleo-cytoskeletal coupling is also necessary to transmit extracellular mechanical stimuli across the cytoskeleton to the nucleus, where they may initiate mechanotransduction events. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, formed by the interaction of nesprins and SUN proteins at the nuclear envelope, can bind to nuclear and cytoskeletal elements; however, its functional importance in transmitting intracellular forces has never been directly tested. This question is particularly relevant since recent findings have linked nesprin mutations to muscular dystrophy and dilated cardiomyopathy. Using biophysical assays to assess intracellular force transmission and associated cellular functions, we identified the LINC complex as a critical component for nucleo-cytoskeletal force transmission. Disruption of the LINC complex caused impaired propagation of intracellular forces and disturbed organization of the perinuclear actin and intermediate filament networks. Although mechanically induced activation of mechanosensitive genes was normal (suggesting that nuclear deformation is not required for mechanotransduction signaling) cells exhibited other severe functional defects after LINC complex disruption; nuclear positioning and cell polarization were impaired in migrating cells and in cells plated on micropatterned substrates, and cell migration speed and persistence time were significantly reduced. Taken together, our findings suggest that the LINC complex is critical for nucleo-cytoskeletal force transmission and that LINC complex disruption can result in defects in cellular structure and function that may contribute to the development of muscular dystrophies and cardiomyopathies.  相似文献   
22.
23.
Following recent indirect evidence suggesting a role for ATP-binding cassette (ABC) transporters in root exudation of phytochemicals, we identified 25 ABC transporter genes highly expressed in the root cells most likely to be involved in secretion processes. Of these 25 genes, we also selected six full-length ABC transporters and a half-size transporter for in-depth molecular and biochemical analyses. We compared the exuded root phytochemical profiles of these seven ABC transporter mutants to those of the wild type. There were three nonpolar phytochemicals missing in various ABC transporter mutants compared to the wild type when the samples were analyzed by high-performance liquid chromatography-mass spectrometry. These data suggest that more than one ABC transporter can be involved in the secretion of a given phytochemical and that a transporter can be involved in the secretion of more than one secondary metabolite. The primary and secondary metabolites present in the root exudates of the mutants were also analyzed by gas chromatography-mass spectrometry, which allowed for the identification of groups of compounds differentially found in some of the mutants compared to the wild type. For instance, the mutant Atpdr6 secreted a lower level of organic acids and Atmrp2 secreted a higher level of amino acids as compared to the wild type. We conclude that the release of phytochemicals by roots is partially controlled by ABC transporters.  相似文献   
24.
Epigenetic inactivation due to aberrant promoter methylation is a key process in breast tumorigenesis. Murine models for human breast cancer have been established for nearly every important human oncogene or tumor suppressor gene. Mouse-to-human comparative gene expression and cytogenetic profiling have been widely investigated for these models; however, little is known about the conservation of epigenetic alterations during tumorigenesis. To determine if this key process in human breast tumorigenesis is also mirrored in a murine breast cancer model, we mapped cytosine methylation changes in primary adenocarcinomas and paired lung metastases derived from the polyomavirus middle T antigen mouse model. Global changes in methylcytosine levels were observed in all tumors when compared to the normal mammary gland. Aberrant methylation and associated gene silencing was observed for Hoxa7, a gene that is differentially methylated in human breast tumors, and Gata2, a novel candidate gene. Analysis of HOXA7 and GATA2 expression in a bank of human primary tumors confirms that the expression of these genes is also reduced in human breast cancer. In addition, HOXA7 hypermethylation is observed in breast cancer tissues when compared to adjacent tumor-free tissue. Based on these studies, we present a model in which comparative epigenetic techniques can be used to identify novel candidate genes important for human breast tumorigenesis, in both primary and metastatic tumors.  相似文献   
25.
In primary effusion lymphoma (PEL) cells infected with latent Kaposi''s sarcoma-associated herpesvirus (KSHV), the promoter of the viral lytic switch gene, Rta, is organized into bivalent chromatin, similar to cellular developmental switch genes. Histone deacetylase (HDAC) inhibitors (HDACis) reactivate latent KSHV and dramatically remodel the viral genome topology and chromatin architecture. However, reactivation is not uniform across a population of infected cells. We sought to identify an HDACi cocktail that would uniformly reactivate KSHV and reveal the regulatory HDACs. Using HDACis with various specificities, we found that class I HDACis were sufficient to reactivate the virus but differed in potency. Valproic acid (VPA) was the most effective HDACi, inducing lytic cycle gene expression in 75% of cells, while trichostatin A (TSA) induced less widespread lytic gene expression and inhibited VPA-stimulated reactivation. VPA was only slightly superior to TSA in inducing histone acetylation of Rta''s promoter, but only VPA induced significant production of infectious virus, suggesting that HDAC regulation after Rta expression has a dramatic effect on reactivation progression. Ectopic HDACs 1, 3, and 6 inhibited TPA-stimulated KSHV reactivation. Surprisingly, ectopic HDACs 1 and 6 stimulated reactivation independently, suggesting that the stoichiometries of HDAC complexes are critical for the switch. Tubacin, a specific inhibitor of the ubiquitin-binding, proautophagic HDAC6, also inhibited VPA-stimulated reactivation. Immunofluorescence indicated that HDAC6 is expressed diffusely throughout latently infected cells, but its expression level and nuclear localization is increased during reactivation. Overall, our data suggest that inhibition of HDAC classes I and IIa and maintenance of HDAC6 (IIb) activity are required for optimal KSHV reactivation.  相似文献   
26.
The reptile fauna of Romania comprises 23 species, out of which 12 species reach here the limit of their geographic range. We compiled and updated a national database of the reptile species occurrences from a variety of sources including our own field surveys, personal communication from specialists, museum collections and the scientific literature. The occurrence records were georeferenced and stored in a geodatabase for additional analysis of their spatial patterns. The spatial analysis revealed a biased sampling effort concentrated in various protected areas, and deficient in the vast agricultural areas of the southern part of Romania. The patterns of species richness showed a higher number of species in the warmer and drier regions, and a relatively low number of species in the rest of the country. Our database provides a starting point for further analyses, and represents a reliable tool for drafting conservation plans.  相似文献   
27.
The addition of fructose (F) to a glucose (G) supplement may modify the metabolic response during exercise; however, its effect on perceived exertion (PE) and its influence on postprandial metabolism have not been jointly studied in different types of exercise. This study sought to assess the acute effects of F addition to a G supplement on PE and on the postprandial metabolic response during a single bout of either strength exercise (SE) or endurance exercise (EE). Twenty physically trained men ingested an oral dose of G or GF 15 minutes before starting a 30-minute session of SE (10 sets of 10 repetitions of half squat) or EE (cycling). The combination resulted in 4 randomized interventions in a crossover design in which all subjects performed all experimental conditions: G + SE, GF + SE, G + EE, and GF + SE. Perceived exertion, heart rate (HR), G, insulin, lactate, and urinary catecholamine levels were measured before exercise, during the exercise, and during acute recovery. Perceived exertion during exercise was lower for GF than for G during SE and EE (mean ± SD; 8.95 ± 0.62 vs. 9.26 ± 0.65, p < 0.05 and 7.47 ± 0.84 vs. 7.74 ± 0.93, p < 0.05, respectively). The glycemic peak in GF + SE was lower than in G + SE (p < 0.05), and there was a second peak during recovery (p < 0.05), whereas in EE, no difference in blood G levels was noted between G and GF supplements. Moreover, HR, urinary adrenalin, and noradrenalin were lower in GF than in G (p < 0.05), though only for EE. The results showed that PE is positively affected by GF supplementation for both SE and EE and thus may be a useful dietary strategy for helping to achieve higher training loads.  相似文献   
28.
The cerebral vasculature is a target tissue for sex steroid hormones. Estrogens, androgens, and progestins all influence the function and pathophysiology of the cerebral circulation. Estrogen decreases cerebral vascular tone and increases cerebral blood flow by enhancing endothelial-derived nitric oxide and prostacyclin pathways. Testosterone has opposite effects, increasing cerebral artery tone. Cerebrovascular inflammation is suppressed by estrogen but increased by testosterone and progesterone. Evidence suggests that sex steroids also modulate blood-brain barrier permeability. Estrogen has important protective effects on cerebral endothelial cells by increasing mitochondrial efficiency, decreasing free radical production, promoting cell survival, and stimulating angiogenesis. Although much has been learned regarding hormonal effects on brain blood vessels, most studies involve young, healthy animals. It is becoming apparent that hormonal effects may be modified by aging or disease states such as diabetes. Furthermore, effects of testosterone are complicated because this steroid is also converted to estrogen, systemically and possibly within the vessels themselves. Elucidating the impact of sex steroids on the cerebral vasculature is important for understanding male-female differences in stroke and conditions such as menstrual migraine and preeclampsia-related cerebral edema in pregnancy. Cerebrovascular effects of sex steroids also need to be considered in untangling current controversies regarding consequences of hormone replacement therapies and steroid abuse.  相似文献   
29.
Administration of the current tuberculosis (TB) vaccine to newborns is not a reliable route for preventing TB in adults. The conversion of XMP to GMP is catalyzed by guaA-encoded GMP synthetase (GMPS), and deletions in the Shiguella flexneri guaBA operon led to an attenuated auxotrophic strain. Here we present the cloning, expression, and purification of recombinant guaA-encoded GMPS from Mycobacterium tuberculosis (MtGMPS). Mass spectrometry data, oligomeric state determination, steady-state kinetics, isothermal titration calorimetry (ITC), and multiple sequence alignment are also presented. The homodimeric MtGMPS catalyzes the conversion of XMP, MgATP, and glutamine into GMP, ADP, PP(i), and glutamate. XMP, NH(4)(+), and Mg(2+) displayed positive homotropic cooperativity, whereas ATP and glutamine displayed hyperbolic saturation curves. The activity of ATP pyrophosphatase domain is independent of glutamine amidotransferase domain, whereas the latter cannot catalyze hydrolysis of glutamine to NH(3) and glutamate in the absence of substrates. ITC data suggest random order of binding of substrates, and PP(i) is the last product released. Sequence comparison analysis showed conservation of both Cys-His-Glu catalytic triad of N-terminal Class I amidotransferase and of amino acid residues of the P-loop of the N-type ATP pyrophosphatase family.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号