首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   5篇
  2023年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2014年   3篇
  2013年   8篇
  2012年   14篇
  2011年   9篇
  2010年   6篇
  2009年   4篇
  2008年   16篇
  2007年   10篇
  2006年   25篇
  2005年   3篇
  2004年   7篇
  2003年   5篇
  2002年   7篇
  2001年   9篇
  2000年   9篇
  1999年   4篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1972年   2篇
排序方式: 共有181条查询结果,搜索用时 31 毫秒
131.

Background

Down syndrome (DS), caused by an extra copy of chromosome 21, affects 1 in 750 live births and is characterized by cognitive impairment and a constellation of congenital defects. Currently, little is known about the molecular pathogenesis and no direct genotype-phenotype relationship has yet been confirmed. Since DS amniocytes are expected to have a distinct biological behaviour compared to normal amniocytes, we hypothesize that relative quantification of proteins produced from trisomy and euploid (chromosomally normal) amniocytes will reveal dysregulated molecular pathways.

Results

Chromosomally normal- and Trisomy 21-amniocytes were quantitatively analyzed by using Stable Isotope Labeling of Amino acids in Cell culture and tandem mass spectrometry. A total of 4919 unique proteins were identified from the supernatant and cell lysate proteome. More specifically, 4548 unique proteins were identified from the lysate, and 91% of these proteins were quantified based on MS/MS spectra ratios of peptides containing isotope-labeled amino acids. A total of 904 proteins showed significant differential expression and were involved in 25 molecular pathways, each containing a minimum of 16 proteins. Sixty of these proteins consistently showed aberrant expression from trisomy 21 affected amniocytes, indicating their potential role in DS pathogenesis. Nine proteins were analyzed with a multiplex selected reaction monitoring assay in an independent set of Trisomy 21-amniocyte samples and two of them (SOD1 and NES) showed a consistent differential expression.

Conclusions

The most extensive proteome of amniocytes and amniotic fluid has been generated and differentially expressed proteins from amniocytes with Trisomy 21 revealed molecular pathways that seem to be most significantly affected by the presence of an extra copy of chromosome 21.  相似文献   
132.

Background

Alzheimer’s disease (AD) is the most common type of dementia affecting people over 65 years of age. The hallmarks of AD are the extracellular deposits known as amyloid β plaques and the intracellular neurofibrillary tangles, both of which are the principal players involved in synaptic loss and neuronal cell death. Tau protein and Aβ fragment 1–42 have been investigated so far in cerebrospinal fluid as a potential AD biomarkers. However, an urgent need to identify novel biomarkers which will capture disease in the early stages and with better specificity remains. High-throughput proteomic and pathway analysis of hippocampal tissue provides a valuable source of disease-related proteins and biomarker candidates, since it represents one of the earliest affected brain regions in AD.

Results

In this study 2954 proteins were identified (with at least 2 peptides for 1203 proteins) from both control and AD brain tissues. Overall, 204 proteins were exclusively detected in AD and 600 proteins in control samples. Comparing AD and control exclusive proteins with cerebrospinal fluid (CSF) literature-based proteome, 40 out of 204 AD related proteins and 106 out of 600 control related proteins were also present in CSF. As most of these proteins were extracellular/secretory origin, we consider them as a potential source of candidate biomarkers that need to be further studied and verified in CSF samples.

Conclusions

Our semiquantitative proteomic analysis provides one of the largest human hippocampal proteome databases. The lists of AD and control related proteins represent a panel of proteins potentially involved in AD pathogenesis and could also serve as prospective AD diagnostic biomarkers.  相似文献   
133.
Breast‐cancer subtypes present with distinct clinical characteristics. Therefore, characterization of subtype‐specific proteins may augment the development of targeted therapies and prognostic biomarkers. To address this issue, MS‐based secretome analysis of eight breast cancer cell lines, corresponding to the three main breast cancer subtypes was performed. More than 5200 non‐redundant proteins were identified with 23, four, and four proteins identified uniquely in basal, HER2‐neu‐amplified, and luminal breast cancer cells, respectively. An in silico mRNA analysis using publicly available breast cancer tissue microarray data was carried out as a preliminary verification step. In particular, the expression profiles of 15 out of 28 proteins included in the microarray (from a total of 31 in our subtype‐specific signature) showed significant correlation with estrogen receptor (ER) expression. A MS‐based analysis of breast cancer tissues was undertaken to verify the results at the proteome level. Eighteen out of 31 proteins were quantified in the proteomes of ER‐positive and ER‐negative breast cancer tissues. Survival analysis using microarray data was performed to examine the prognostic potential of these selected candidates. Three proteins correlated with ER status at both mRNA and protein levels: ABAT, PDZK1, and PTX3, with the former showing significant prognostic potential.  相似文献   
134.
Seminal plasma is a promising biological fluid to use for noninvasive clinical diagnostics of male reproductive system disorders. To verify a list of prospective male infertility biomarkers, we developed a multiplex selected reaction monitoring assay and measured the relative abundance of 31 proteins in 30 seminal plasma samples from normal, nonobstructive azoospermia and post-vasectomy individuals. Median levels of some proteins were decreased by more than 100-fold in nonobstructive azoospermia or post-vasectomy samples, in comparison with normal samples. To follow up the most promising candidates and measure their concentrations in seminal plasma, heavy isotope-labeled internal standards were synthesized and used to reanalyze 20 proteins in the same set of samples. Concentrations of candidate proteins in normal seminal plasma were found in the range 0.1-1000 μg/ml but were significantly decreased in nonobstructive azoospermia and post-vasectomy. These data allowed us to select, for the first time, biomarkers to discriminate between normal, nonobstructive azoospermia, and post-vasectomy (simulated obstructive azoospermia) seminal plasma samples. Some testis-specific proteins (LDHC, TEX101, and SPAG11B) performed with absolute or nearly absolute specificities and sensitivities. Cell-specific classification of protein expression indicated that Sertoli or germ cell dysfunction, but not Leydig cell dysfunction, was observed in nonobstructive azoospermia seminal plasma. The proposed panel of biomarkers, pending further validation, could lead to a clinical assay that can eliminate the need for testicular biopsy to diagnose the category of male infertility, thus providing significant benefits to patients as well as decreased costs associated with the differential diagnosis of azoospermia.  相似文献   
135.
Oncogenic human papillomaviruses (HPV) are associated with nearly all cervical cancers and are increasingly important in the etiology of oropharyngeal tumors. HPV-associated head and neck squamous cell carcinomas (HNSCC) have distinct risk profiles and appreciate a prognostic advantage compared to HPV-negative HNSCC. Promoter hypermethylation is widely recognized as a mechanism in the progression of HNSCC, but the extent to which this mechanism is consistent between HPV(+) and HPV(−) tumors is unknown. To investigate the epigenetic regulation of gene expression in HPV-induced and carcinogen-induced cancers, we examined genome-wide DNA methylation and gene expression in HPV(+) and HPV(−) SCC cell lines. We used two platforms: the Illumina Infinium Methylation BeadArray and tiling arrays, and confirmed illustrative examples with pyrosequencing and quantitative PCR. These analyses indicate that HPV(+) cell lines have higher DNA methylation in genic and LINE-1 regions than HPV(−) cell lines. Differentially methylated loci between HPV(+) and HPV(−) cell lines significantly correlated with HPV-typed HNSCC primary tumor DNA methylation levels. Novel findings include higher promoter methylation of polycomb repressive complex 2 target genes in HPV(+) cells compared to HPV(−) cells and increased expression of DNMT3A in HPV(+) cells. Additionally, CDKN2A and KRT8 were identified as interaction hubs among genes with higher methylation and lower expression in HPV(−) cells. Conversely, RUNX2, IRS-1 and CCNA1 were major hubs with higher methylation and lower expression in HPV(+) cells. Distinct HPV(+) and HPV(−) epigenetic profiles should provide clues to novel targets for development of individualized therapeutic strategies.Key words: epigenetics, human papillomavirus, HNSCC, DNA methylation, squamous cell carcinoma, gene expression, microarrays, illumina infinium humanmethylation27 beadarray  相似文献   
136.
Monoclonal antibodies that bind the native conformation of proteins are indispensable reagents for the development of immunoassays, production of therapeutic antibodies and delineating protein interaction networks by affinity purification-mass spectrometry. Antibodies generated against short peptides, protein fragments, or even full length recombinant proteins may not bind the native protein form in biological fluids, thus limiting their utility. Here, we report the application of immunocapture coupled with selected reaction monitoring measurements (immunocapture-SRM), in the rapid screening of hybridoma culture supernatants for monoclonal antibodies that bind the native protein conformation. We produced mouse monoclonal antibodies, which detect in human serum or seminal plasma the native form of the human testis-expressed sequence 101 (TEX101) protein—a recently proposed biomarker of male infertility. Pairing of two monoclonal antibodies against unique TEX101 epitopes led to the development of an ELISA for the measurement of TEX101 in seminal plasma (limit of detection: 20 pg/ml) and serum (limit of detection: 40 pg/ml). Measurements of matched seminal plasma samples, obtained from men pre- and post-vasectomy, confirmed the absolute diagnostic specificity and sensitivity of TEX101 for noninvasive identification of physical obstructions in the male reproductive tract. Measurement of male and female serum samples revealed undetectable levels of TEX101 in the systemic circulation of healthy individuals. Immunocapture-SRM screening may facilitate development of monoclonal antibodies and immunoassays against native forms of challenging protein targets.Monoclonal antibodies that bind the native form of a protein are indispensable for the development of sensitive immunoassays, production of therapeutic antibodies and for studying protein interaction networks by affinity purification-mass spectrometry (1, 2). Large-scale purification of native proteins from biological samples may be challenging, so recombinant proteins or protein fragments are often used for antibody production. Antibodies produced against short peptides, protein fragments, or even full length recombinant proteins, however, may not bind the native protein conformation present in biological fluids, thus limiting the utility of antibodies. Rapid screening of antibody-producing hybridoma clones for native protein binders requires highly specific and sensitive assays, performed under nondenaturing conditions. Here, we report the capability of an immunocapture-SRM assay to facilitate fast screening of hybridoma cultures for monoclonal antibodies that recognize the native conformation of testis-expressed sequence 101 (TEX101)1 protein in biological fluids.Recently, we discovered, verified, and validated two proteins, testis-specific protein TEX101 and epididymis-specific protein ECM1, as biomarkers for the differential diagnosis of azoospermia (3, 4). Combination of TEX101 and ECM1 proteins measured in seminal plasma could differentiate between normal spermatogenesis, obstructive azoospermia (OA), and nonobstructive azoospermia (NOA) with very high diagnostic sensitivity and specificity. TEX101 levels in seminal plasma also facilitated classification of NOA subtypes of hypospermatogenesis, maturation arrest and Sertoli cell-only syndrome (5). A clinical laboratory test for TEX101 in seminal plasma may confirm the success of vasectomy or vasovasostomy, eliminate diagnostic testicular biopsies, and predict the success of sperm cell retrieval for assisted reproduction.Human TEX101 is a membrane GPI-anchored protein encoded by the TEX101 gene, located in the 19q13.31 region of chromosome 19. According to the Human Protein Atlas, TEX101 expression is restricted to testicular tissue and male germ cells, with no evidence of expression in any other human tissue or cell type (6). Investigation of the function of mouse TEX101 demonstrated its direct role in fertilization (79).We initially measured TEX101 levels in seminal plasma by mass spectrometry-based selected reaction monitoring (SRM) and immuno-SRM assays, with limits of detection of 120 and 5 ng/ml, respectively (4, 5). However, because of the ultra-wide range of TEX101 concentrations in seminal plasma of infertile and healthy men (0.5 ng/ml to 50,000 ng/ml) and theoretically zero levels for some azoospermic patients, a sensitive TEX101 immunoassay is required to develop a clinical laboratory test. In addition to immunoassay, monoclonal antibodies against native TEX101 would allow investigating its interactome and revealing its functional role in spermatogenesis and male fertility. Because TEX101 may emerge as a novel biomarker of male infertility, in this work we focused on the development of an ELISA for sensitive measurement of TEX101 in seminal plasma and serum.Our initial efforts to develop a TEX101 immunoassay using commercially available polyclonal antibodies were not successful. We found that commercial antibodies recognized only the denatured form of TEX101 and were useful for immunohistochemistry and Western blots, but not for the analysis of native TEX101 in seminal plasma. Here, we describe the production of mouse monoclonal antibodies against native TEX101, screening of antibody-producing clones by the two-step immunocapture and SRM assay, development of a sensitive ELISA and measurement of TEX101 in seminal plasma and serum (Fig. 1).Open in a separate windowFig. 1.Pipeline for the production of mouse monoclonal anti-TEX101 antibodies and screening of colonies using two-step immunocapture-SRM assay. Screening included the coating of microtiter plates with sheep anti-mouse IgG antibodies, the addition of hybridoma cell supernatants, incubation with seminal plasma containing the native form of TEX101 followed by trypsin digestion and SRM analysis. Two-step immunocapture followed by SRM detection facilitated rapid screening of antibody-producing colonies and provided the following advantages: no requirement for previously developed TEX101 antibodies, small scale antibody production on 96-well plates, screening of low amounts of the newly-produced antibodies and direct selection of antibodies against the native form of TEX101. Eventually, all positive clones were expanded and a sensitive immunofluorescent assay for TEX101 was developed in seminal plasma and serum.  相似文献   
137.
A "bottom-up" proteomics approach and a two-dimensional (strong cation exchange followed by reversed-phase) LC-MS/MS strategy on a linear ion trap (LTQ) were utilized to identify and compare expressions of extracellular and membrane-bound proteins in the conditioned media of three breast cell lines (MCF-10A, BT474, and MDA-MB-468). Proteomics analysis of the media identified in excess of 600, 500, and 700 proteins in MCF-10A, BT474, and MDA-MB-468, respectively. We successfully identified the internal control proteins, kallikreins 5, 6, and 10 (ranging in concentration from 2 to 50 microg/liter) in MDA-MB-468 conditioned medium as validated by ELISA and confidently identified Her-2/neu in BT474 cells. Subcellular localization was determined based on Genome Ontology terms for all the 1,139 proteins of which 34% were classified as extracellular and membrane-bound. Proteomics analysis of MDA-MB-468 cell lysate demonstrated that only 5% of all identified proteins were extracellular. This confirmed our hypothesis that examining the CM of cell lines, as opposed to the cell lysates, leads to a significant enrichment in secreted proteins. Tissue specificity, functional classifications, and spectral counting were performed. Elafin, a protease inhibitor, identified in the conditioned media of BT474 and MDA-MB-468 and the three kallikreins (KLK5, KLK6, and KLK10) were validated using an immunoassay on various serum and biological samples. Some of the secreted proteins identified have established roles in breast cancer development (cell growth, differentiation, and metastasis) and/or are linked to early onset breast cancer. Our approach to mining for low abundance molecules could identify proteins in various stages of breast cancer development. Many of the identified proteins are potentially useful to investigate as circulating serum breast cancer biomarkers.  相似文献   
138.
Human cervico-vaginal fluid (CVF) is a mixture of fluids originating from the vagina, cervix, endometrium, and oviduct. CVF has been shown to play an important role in protecting the vagina from infection. We used "bottom-up" proteomic approaches to characterize the protein repertoire of human CVF. We applied two different sample prefractionation methods, one-dimensional-SDS-PAGE (1D-SDS-PAGE) and strong cation-exchange chromatography, followed by LC-MS/MS and bioinformatic analysis. We identified a total of 685 proteins. Strong cation-exchange chromatography prefractionation resulted in a larger number of proteins identified when compared with 1D-SDS-PAGE. Extracellular or membrane proteins made up 30% of the proteins identified, according to Genome Ontology (GO) classifications. We confirmed the presence of defense-related proteins, such as haptoglobin, defensins, and lactoferrin; and identified new ones such as azurocidin and dermcidin. We also identified many serine and cysteine proteases, including 6 members of the kallikrein family (KLKs 6, 7, 10, 11, 12, and 13). The same KLKs were also confirmed quantitatively by ELISA assays. Knowledge of the CVF proteome will aid in the discovery of potential biomarkers for gynecological malignancies and infections and provide additional clues for its physiological functions.  相似文献   
139.
The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain holds promise for the treatment of neurological diseases and has yielded new insight into brain cancer. However, the complete repertoire of signaling pathways that governs the proliferation and self-renewal of NSCs, which we refer to as the 'ground state', remains largely uncharacterized. Although the candidate gene approach has uncovered vital pathways in NSC biology, so far only a few highly studied pathways have been investigated. Based on the intimate relationship between NSC self-renewal and neurosphere proliferation, we undertook a chemical genetic screen for inhibitors of neurosphere proliferation in order to probe the operational circuitry of the NSC. The screen recovered small molecules known to affect neurotransmission pathways previously thought to operate primarily in the mature central nervous system; these compounds also had potent inhibitory effects on cultures enriched for brain cancer stem cells. These results suggest that clinically approved neuromodulators may remodel the mature central nervous system and find application in the treatment of brain cancer.  相似文献   
140.
Desquamation of the stratum corneum is a serine protease-dependent process. Two members of the human tissue kallikrein (KLK) family of (chymo)tryptic-like serine proteases, KLK5 and KLK7, are implicated in desquamation by digestion of (corneo)desmosomes and inhibition by desquamation-related serine protease inhibitors (SPIs). However, the epidermal localization and specificity of additional KLKs also supports a role for these enzymes in desquamation. This study aims to delineate the probable contribution of KLK1, KLK5, KLK6, KLK13, and KLK14 to desquamation by examining their interactions, in vitro, with: 1) colocalized SPI, lympho-epithelial Kazal-type-related inhibitor (LEKTI, four recombinant fragments containing inhibitory domains 1-6 (rLEKTI(1-6)), domains 6-8 and partial domain 9 (rLEKTI(6-9')), domains 9-12 (rLEKTI(9-12)), and domains 12-15 (rLEKTI(12-15)), secretory leukocyte protease inhibitor, and elafin and 2) their ability to digest the (corneo)desmosomal cadherin, desmoglein 1. KLK1 was not inhibited by any SPI tested. KLK5, KLK6, KLK13, and KLK14 were potently inhibited by rLEKTI(1-6), rLEKTI(6-9'), and rLEKTI(9-12) with Ki values in the range of 2.3-28.4 nm, 6.1-221 nm, and 2.7-416 nm for each respective fragment. Only KLK5 was inhibited by rLEKTI(12-15) (Ki = 21.8 nm). No KLK was inhibited by secretory leukocyte protease inhibitor or elafin. Apart from KLK13, all KLKs digested the ectodomain of desmoglein 1 within cadherin repeats, Ca2+ binding sites, or in the juxtamembrane region. Our study indicates that multiple KLKs may participate in desquamation through cleavage of desmoglein 1 and regulation by LEKTI. These findings may have clinical implications for the treatment of skin disorders in which KLK activity is elevated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号