全文获取类型
收费全文 | 82篇 |
免费 | 3篇 |
专业分类
85篇 |
出版年
2022年 | 1篇 |
2021年 | 3篇 |
2020年 | 1篇 |
2019年 | 3篇 |
2018年 | 1篇 |
2016年 | 5篇 |
2015年 | 3篇 |
2014年 | 5篇 |
2013年 | 7篇 |
2012年 | 7篇 |
2011年 | 5篇 |
2010年 | 1篇 |
2009年 | 3篇 |
2008年 | 4篇 |
2007年 | 5篇 |
2006年 | 4篇 |
2005年 | 3篇 |
2004年 | 2篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 3篇 |
1999年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1992年 | 1篇 |
1988年 | 1篇 |
1985年 | 2篇 |
1982年 | 1篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1973年 | 1篇 |
1970年 | 2篇 |
1966年 | 1篇 |
排序方式: 共有85条查询结果,搜索用时 15 毫秒
81.
82.
Rabia Aly I Diab M El-Amir AM Hendawy M Kadry S 《The Korean journal of parasitology》2012,50(1):37-43
Although schistosomicidal drugs and other control measures exist, the advent of an efficacious vaccine remains the most potentially powerful means for controlling this disease. In this study, native fatty acid binding protein (FABP) from Fasciola gigantica was purified from the adult worm's crude extract by saturation with ammonium sulphate followed by separation on DEAE-Sephadex A-50 anion exchange chromatography and gel filtration using Sephacryl HR-100, respectively. CD1 mice were immunized with the purified, native F. gigantica FABP in Freund's adjuvant and challenged subcutaneously with 120 Schistosoma mansoni cercariae. Immunization of CD1 mice with F. gigantica FABP has induced heterologous protection against S. mansoni, evidenced by the significant reduction in mean worm burden (72.3%), liver and intestinal egg counts (81.3% and 80.8%, respectively), and hepatic granuloma counts (42%). Also, it elicited mixed IgG(1)/IgG(2b) immune responses with predominant IgG1 isotype, suggesting that native F. gigantica FABP is mediated by a mixed Th1/Th2 response. However, it failed to induce any significant differences in the oogram pattern or in the mean granuloma diameter. This indicated that native F. gigantica FABP could be a promising vaccine candidate against S. mansoni infection. 相似文献
83.
84.
Robyn K Fuchs Matt R Allen Meghan E Ruppel Tamim Diab Roger J Phipps Lisa M Miller David B Burr 《Matrix biology》2008,27(1):34-41
At the tissue level it is well established that the rate of remodeling is related to the degree of mineralization. However, it is unknown how long it takes for an individual bone structural unit (BSU) to become fully mineralized during secondary mineralization. Using synchrotron Fourier transform infrared microspectroscopy (FTIRM) we examined the time required for newly formed bone matrix to reach a physiological mineralization limit. Twenty-six, four-month old female New Zealand white rabbits were administered up to four different fluorochrome labels at specific time points to evaluate the chemical composition of labeled osteons from the tibial diaphysis that had mineralized for 1, 8, 18, 35, 70, 105, 140, 175, 210, 245, 280, 315, 350, and 385 days. Interstitial bone from 505 day old rabbits was used as a reference value for the physiological limit to which bone mineralizes. Using synchrotron FTIRM, area integrations were carried out on protein (Amide I: 1688-1623 cm(-1)), carbonate (v(2)CO(3)(2-): 905-825 cm(-1)), and phosphate (v(4)PO(4)(3-): 650-500 cm(-1)) IR bands. IR spectral data are presented as ratios of phosphate/protein (overall matrix mineralization) and carbonate/protein. The rate of mineralization of osteonal bone proceeded rapidly between day 1 and 18, reaching 67% of interstitial bone levels. This was followed by a slower, more progressive accumulation of mineral up to day 350. By 350 days the rate of increase plateaued. The ratio of carbonate/protein also increased rapidly during the first 18 days, reaching 73% of interstitial bone levels. The ratio of carbonate/protein plateaued by day 315, reaching levels not significantly different to interstitial bone levels. In conclusion, our data demonstrate that bone accumulates mineral rapidly during the first 18 days (primary mineralization), followed by a more gradual increase in the accumulation of mineral (secondary mineralization) which we found to be completed in 350 days. 相似文献
85.