首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   8篇
  128篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   6篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   8篇
  2008年   8篇
  2007年   4篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   8篇
  2002年   3篇
  2001年   11篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
61.
62.
A A Hoffmann  M Hercus  H Dagher 《Genetics》1998,148(1):221-231
Field populations of Drosophila melanogaster are often infected with Wolbachia, a vertically transmitted microorganism. Under laboratory conditions the infection causes partial incompatibility in crosses between infected males and uninfected females. Here we examine factors influencing the distribution of the infection in natural populations. We show that the level of incompatibility under field conditions was much weaker than in the laboratory. The infection was not transmitted with complete fidelity under field conditions, while field males did not transmit the infection to uninfected females and Wolbachia did not influence sperm competition. There was no association between field fitness as measured by fluctuating asymmetry and the infection status of adults. Infected field females were smaller than uninfecteds in some collections from a subtropical location, but not in other collections from the same location. Laboratory cage studies showed that the infection did not change in frequency when populations were maintained at a low larval density, but it decreased in frequency at a high larval density. Monitoring of infection frequencies in natural populations indicated stable frequencies in some populations but marked fluctuations in others. Simple models suggest that the infection probably provides a fitness benefit for the host in order to persist in populations. The exact nature of this benefit remains elusive.  相似文献   
63.
64.
Galacto-oligosaccharides (GOS) are indigestible dietary fibers that are able to reach the lower gastrointestinal tract to be selectively fermented by health-promoting bacteria. In this report, we describe the heterologous expression of an optimized synthetically produced version of the β-hexosyltransferase gene (Bht) from Sporobolomyces singularis. The Bht gene encodes a glycosyl hydrolase (EC 3.2.1.21) that acts as galactosyltransferase, able to catalyze a one-step conversion of lactose to GOS. Expression of the enzyme in Escherichia coli yielded an inactive insoluble protein, while the methylotrophic yeast Pichia pastoris GS115 produced a bioactive β-hexosyltransferase (rBHT). The enzyme exhibited faster kinetics at pHs between 3.5 and 6 and at temperatures between 40 and 50°C. Enzyme stability improved at temperatures lower than 40°C, and glucose was found to be a competitive inhibitor of enzymatic activity. P. pastoris secreted a fraction of the bioactive rBHT into the fermentation broth, while the majority of the enzyme remained associated with the outer membrane. Both the secreted and the membrane-associated forms were able to efficiently convert lactose to GOS. Additionally, resting cells with membrane-bound enzyme converted 90% of the initial lactose into GOS at 68% yield (g/g) (the maximum theoretical is 75%) with no secondary residual (glucose or galactose) products. This is the first report of a bioactive BHT from S. singularis that has been heterologously expressed.  相似文献   
65.
The ability to phenotypically rescue a mutant (Rat-3, thymidine kinase-deficient) cell line by electroporation of functional TK enzyme has been investigated. Extracts of electroporated cells showed a 35-fold increase in TK enzyme levels under conditions where greater than 90% of the cells remained viable. The electroporated enzyme was intracellular, as demonstrated by the fact that cells were able to utilize exogenous [3H]thymidine for DNA synthesis. By in situ autoradiography, 82% of electroporated cells contained functional enzyme and incorporated [3H]thymidine into DNA. Thus, this technique can efficiently provide a missing metabolic function to cultured mammalian cells.  相似文献   
66.
The neutrophil NADPH oxidase produces superoxide anions in response to infection. This reaction is activated by association of cytosolic factors, p47phox and p67phox, and a small G protein Rac with the membranous flavocytochrome b558. Another cytosolic factor, p40phox, is associated to the complex and is reported to play regulatory roles. Initiation of the NADPH oxidase activation cascade has been reported as consecutive to phosphorylation on serines 359/370 and 379 of the p47phox C terminus. These serines surround a polyproline motif that can interact with the Src homology 3 (SH3) module of p40phox (SH3p40) or the C-terminal SH3 of p67phox (C-SH3p67). The latter one presents a higher affinity in the resting state for p47phox. A change in SH3 binding preference following phosphorylation has been postulated earlier. Here we report the crystal structures of SH3p40 alone or in complex with a 12-residue proline-rich region of p47phox at 1.46 angstrom resolution. Using intrinsic tryptophan fluorescence measurements, we compared the affinity of the strict polyproline motif and the whole C terminus peptide with both SH3p40 and C-SH3p67. These data reveal that SH3p40 can interact with a consensus polyproline motif but also with a noncanonical motif of the p47phox C terminus. The electrostatic surfaces of both SH3 are very different, and therefore the binding preference for C-SH3p67 can be attributed to the polyproline motif recognition and particularly to the Arg-368p47 binding mode. The noncanonical motif contributes equally to interaction with both SH3. The influence of serine phosphorylation on residues 359/370 and 379 on the affinity for both SH3 domains has been checked. We conclude that contrarily to previous suggestions, phosphorylation of Ser-359/370 does not modify the SH3 binding affinity for both SH3, whereas phosphorylation of Ser-379 has a destabilizing effect on both interactions. Other mechanisms than a phosphorylation induced switch between the two SH3 must therefore take place for NADPH oxidase activation cascade to start.  相似文献   
67.
Marine sponges are found to be a rich source of bioactive compounds which show a wide range of biological activities including antiviral, antibacterial, and anti-inflammatory activities. This study aimed to investigate the possible anti-inflammatory, antioxidant and immunomodulator effects of the methanolic extract of the Red Sea marine sponge Xestospongia testudinaria. The chemical composition of the Xestospongia testudinaria methanolic extract was determined using Gas chromatography-mass spectroscopy (GC-MS) analysis. DPPH (2, 2-diphenyl-1-picryl-hydrazyl) was measured to assess the antioxidant activity of the sponge extract. Carrageenan-induced rat hind paw edema was adopted in this study. Six groups of rats were used: group1: Control, group 2: Carrageenan, group 3: indomethacin (10 mg/kg), group 4–6: Xestospongia testudinaria methanolic extract (25, 50, and 100 mg/kg). Evaluation of the anti-inflammatory activity was performed by both calculating the percentage increase in paw weight and hisopathologically. Assessment of the antioxidant and immunomodulatory activity was performed. GC-MS analysis revealed that there were 41 different compounds present in the methanolic extract. Sponge extract exhibited antioxidant activity against DPPH free radicals. Xestospongia testudinaria methanolic extract (100 mg/kg) significantly decreased % increase in paw weight measured at 1, 2, 3 and 4 h after carrageenan injection. Histopathologically, the extract caused a marked decrease in the capillary congestion and inflammatory cells infiltrate. The extract decreased paw malondialdehyde (MDA) and nitric oxide (NO) and increased the reduced glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT) activity. It also decreased the inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1 β(IL-1β) and IL-6. The results of this study demonstrated the anti-inflammatory, antioxidant, and immunomodulatory effects of the methanolic extract of the Red Sea sponge Xestospongia testudinaria (100 mg/kg).  相似文献   
68.
69.

Background

The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.

Methods

A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox–p67phox complex.

Results

The data presented here are consistent with the absence of a catalytic role of the p47phox–p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.

Conclusion and general significance

The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome.  相似文献   
70.
Glyceraldehyde 3-P dehydrogenase was purified approximately 250-fold from pig liver and crystallized. The purification procedure consisted of treating liver homogenates with zinc chloride, followed by ammonium sulfate fractionation and ion exchange chromatography. The enzyme was monodisperse in the ultracentrifuge with a sedimentation coefficient of s20,w = 7.85 S. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed a single subunit band with an approximate molecular weight of 38,000. High-speed sedimentation equilibrium gave a molecular weight of 1.5 × 105. Incubation of the enzyme with ATP at 0 °C caused a loss of its dehydrogenase activity; some of the lost activity was regained upon warming to room temperature. Sucrose density gradient studies of the ATP-treated enzyme revealed a decrease in its sedimentation coefficient from 7.8 to 3.85 S. In the forward reaction direction, the Km for glyceraldehyde 3-P was 240 μm and the Km for NAD was 12 μm. In the backward reaction direction, the Km for NADH was 23 μm and the Ki for NAD was 850 μm. Pig liver glyceraldehyde-3-P dehydrogenase resembles the rabbit muscle enzyme in that it apparently contains 2 to 3 mol of tightly bound NAD. However, it differs strongly from that enzyme in its rate and extent of inactivation by ATP at 0 °C and by urea; the pig liver enzyme, like the yeast enzyme, dissociates much more slowly and much less completely than the rabbit muscle enzyme under comparable conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号