首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   15篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2017年   2篇
  2015年   4篇
  2014年   7篇
  2013年   3篇
  2012年   7篇
  2011年   3篇
  2010年   8篇
  2009年   8篇
  2008年   4篇
  2006年   4篇
  2005年   3篇
  2003年   7篇
  2002年   4篇
  2001年   8篇
  2000年   4篇
  1999年   9篇
  1998年   3篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   8篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   13篇
  1978年   12篇
  1977年   6篇
  1975年   2篇
  1974年   8篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
排序方式: 共有198条查询结果,搜索用时 942 毫秒
31.
32.
33.
PYRIN-containing Apaf1-like proteins (PYPAFs) are members of the nucleotide-binding site/leucine-rich repeat (NBS/LRR) family of signal transduction proteins. We report here that PYPAF7 is a novel PYPAF protein that activates inflammatory signaling pathways. The expression of PYPAF7 is highly restricted to immune cells, and its gene maps to chromosome 19q13.4, a locus that contains a cluster of genes encoding numerous PYPAF family members. Co-expression of PYPAF7 with ASC results in the recruitment of PYPAF7 to distinct cytoplasmic loci and a potent synergistic activation of NF-kappa B. To identify other proteins involved in PYPAF7 and ASC signaling pathways, we performed a mammalian two-hybrid screen and identified pro-caspase-1 as a binding partner of ASC. Co-expression of PYPAF7 and ASC results in the synergistic activation of caspase-1 and a corresponding increase in secretion of interleukin-1 beta. In addition, PYPAF1 induces caspase-1-dependent cytokine processing when co-expressed with ASC. These findings indicate that PYPAF family members participate in inflammatory signaling by regulating the activation of NF-kappa B and cytokine processing.  相似文献   
34.
Brain Cytochrome Oxidase in Alzheimer''s Disease   总被引:5,自引:0,他引:5  
A recent demonstration of markedly reduced (-50%) activity of cytochrome oxidase (CO; complex 4), the terminal enzyme of the mitochondrial enzyme transport chain, in platelets of patients with Alzheimer's disease (AD) suggested the possibility of a systemic and etiologically fundamental CO defect in AD. To determine whether a CO deficiency occurs in AD brain, we measured the activity of CO in homogenates of autopsied brain regions of 19 patients with AD and 30 controls matched with respect to age, postmortem time, sex, and, as indices of agonal status, brain pH and lactic acid concentration. Mean CO activity in AD brain was reduced in frontal (-26%: p less than 0.01), temporal (-17%; p less than 0.05), and parietal (-16%; not significant, p = 0.055) cortices. In occipital cortex and putamen, mean CO levels were normal, whereas in hippocampus, CO activity, on average, was nonsignificantly elevated (20%). The reduction of CO activity, which is tightly coupled to neuronal metabolic activity, could be explained by hypofunction of neurons, neuronal or mitochondrial loss, or possibly by a more primary, but region-specific, defect in the enzyme itself. The absence of a CO activity reduction in all of the examined brain areas does not support the notion of a generalized brain CO abnormality. Although the functional significance of a 16-26% cerebral cortical CO deficit in human brain is not known, a deficiency of this key energy-metabolizing enzyme could reduce energy stores and thereby contribute to the brain dysfunction and neurodegenerative processes in AD.  相似文献   
35.
36.
Mahogany ( Swietenia macrophylla King) regenerates in areas of erosion on high terraces and in forest killed by flooding and deposition of alluvial sediments in the Chimanes Forest, Bolivia. These hydrological disturbances are patchy, and only one of five stands of mahogany that we inventoried was regenerating. Mahogany survives these disturbances significantly better than the common tree species. The long time between disturbances appears to favour late maturation. Mahogany trees allocate little photosynthates to reproduction until they are very large emergents, at least 80 cm in diameter. The episodic nature of the regeneration sites means that mahogany stands are composed of one or a few cohorts, which are vulnerable to overharvesting, particularly with the current use of a minimum cutting diameter to regulate harvest. The delayed onset of fecundity means that the small trees that escape harvest are not very fecund, resulting in minimal seed input to logged forest. Only 7–9% of the gaps created by logging contain natural regeneration after 20 + yr. A successful management plan for mahogany would entail a monocyclic harvest, with a rotation age of 100 + years, the estimated time that it takes for trees to achieve commercial size in natural forest. Since the number of seed trees that will be left is small, they should be concentrated in sites that are likely to be conducive to natural regeneration, such as near rivers and flood damaged forest. Seed production will be maximized for a given basal area (opportunity cost to loggers) if trees c. 110 cm dbh are selected as seed trees. The mahogany stocks in the Chimanes Forest are nearly exhausted, but the findings of this study could be used to help rebuild the mahogany populations, or to design management plans for the commercial species that have similar ecologies to mahogany.  相似文献   
37.
38.
39.
40.
A dramatic difference is observed in the intracellular distribution of the high mobility group (HMG) proteins when chicken embryo fibroblasts are fractionated into nucleus and cytoplasm by either mass enucleation of cytochalasin-B-treated cells or by differential centrifugation of mechanically disrupted cells. Nuclei (karyoplasts) obtained by cytochalasin B treatment of cells contain more than 90 percent of the HMG 1, while enucleated cytoplasts contain the remainder. A similar distribution between karyoplasts and cytoplasts is observed for the H1 histones and the nucleosomal core histones as anticipated. The presence of these proteins, in low amounts, in the cytoplast preparation can be accounted for by the small percentage of unenucleated cells present. In contrast, the nuclei isolated from mechanically disrupted cells contain only 30-40 percent of the total HMGs 1 and 2, the remainder being recovered in the cytosol fraction. No histone is observed in the cytosol fraction. Unike the higher molecular weight HMGs, most of the HMGs 14 and 17 sediment with the nuclei after cell lysis by mechanical disruption. The distribution of HMGs is unaffected by incubating cells with cytochalasin B and mechanically fractionating rather than enucleating them. Therefore, the dramatic difference in HMG 1 distribution observed using the two fractionation techniques cannot be explained by a cytochalasin-B-induced redistribution. On reextraction and sedimentation of isolated nuclei obtained by mechanical cell disruption, only 8 percent of the HMG 1 is released to the supernate. Thus, the majority of the HMG 1 originally isolated with these nuclei, representing 35 percent of the total HMG 1, is stably bound, as is all the HMGs 14 and 17. The remaining 65 percent of the HMGs 1 and 2 is unstably bound and leaks to the cytosol fraction under the conditions of mechanical disruption. It is suggested that the unstably bound HMGs form a protein pool capable of equilibrating between cytoplasm and stably bound HMGs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号