首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78854篇
  免费   6545篇
  国内免费   4858篇
  90257篇
  2024年   138篇
  2023年   901篇
  2022年   2076篇
  2021年   3602篇
  2020年   2327篇
  2019年   2839篇
  2018年   2868篇
  2017年   2029篇
  2016年   2872篇
  2015年   4585篇
  2014年   5295篇
  2013年   5961篇
  2012年   6897篇
  2011年   6352篇
  2010年   3817篇
  2009年   3372篇
  2008年   4112篇
  2007年   3652篇
  2006年   3171篇
  2005年   2679篇
  2004年   2276篇
  2003年   1972篇
  2002年   1730篇
  2001年   1559篇
  2000年   1565篇
  1999年   1447篇
  1998年   847篇
  1997年   797篇
  1996年   808篇
  1995年   736篇
  1994年   687篇
  1993年   530篇
  1992年   818篇
  1991年   657篇
  1990年   601篇
  1989年   531篇
  1988年   421篇
  1987年   362篇
  1986年   336篇
  1985年   299篇
  1984年   221篇
  1983年   199篇
  1982年   112篇
  1981年   118篇
  1980年   86篇
  1979年   147篇
  1978年   84篇
  1977年   95篇
  1975年   111篇
  1974年   116篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become an ongoing global health pandemic. Since 2019, the pandemic continues to cast a long shadow on all aspects of our lives, bringing huge health and economic burdens to all societies. With our in-depth understanding of COVID-19, from the initial respiratory tract to the later gastrointestinal tract and cardiovascular systems, the multiorgan involvement of this infectious disease has been discovered. Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly named nonalcoholic fatty liver disease (NAFLD), is a major health issue closely related to metabolic dysfunctions, affecting a quarter of the world''s adult population. The association of COVID-19 with MAFLD has received increasing attention, as MAFLD is a potential risk factor for SARS-CoV-2 infection and severe COVID-19 symptoms. In this review, we provide an update on the interactions between COVID-19 and MAFLD and its underlying mechanisms.  相似文献   
952.
积极进行微生物学教学改革经验交流,对于提高高等院校微生物学教学水平和微生物学相关人才培养质量具有重要意义。为了反映我国当代微生物学课程建设与教学改革的最新进展和发展态势,《微生物学通报》以"第十五届全国微生物学教学和科研及成果产业化研讨会"大会为契机,邀约有微生物学及相关学科教学经验的高校教师撰写稿件,通过严格评审后择优选取文章,组织出版了这期"高等院校教学专刊",期望该专刊的出版有助于我国高校微生物学教师间的教改经验交流与合作。  相似文献   
953.
954.
955.
Single-cell sequencing provides a new way to explore the evolutionary history of cells. Compared to traditional bulk sequencing, where a population of heterogeneous cells is pooled to form a single observation, single-cell sequencing isolates and amplifies genetic material from individual cells, thereby preserving the information about the origin of the sequences. However, single-cell data are more error-prone than bulk sequencing data due to the limited genomic material available per cell. Here, we present error and mutation models for evolutionary inference of single-cell data within a mature and extensible Bayesian framework, BEAST2. Our framework enables integration with biologically informative models such as relaxed molecular clocks and population dynamic models. Our simulations show that modeling errors increase the accuracy of relative divergence times and substitution parameters. We reconstruct the phylogenetic history of a colorectal cancer patient and a healthy patient from single-cell DNA sequencing data. We find that the estimated times of terminal splitting events are shifted forward in time compared to models which ignore errors. We observed that not accounting for errors can overestimate the phylogenetic diversity in single-cell DNA sequencing data. We estimate that 30–50% of the apparent diversity can be attributed to error. Our work enables a full Bayesian approach capable of accounting for errors in the data within the integrative Bayesian software framework BEAST2.  相似文献   
956.
The human plutiripotent stem cell registry (hPSCreg) is a global database for human embryonic and induced pluripotent stem cells (hESC, hiPSC). The publicly accessible Registry (https://hpscreg.eu) was set up to provide a transparent resource of quality‐assessed hPSC lines as well as to increase reproducibility of research and interoperability of data.ObjectivesIn this review, we describe the establishment of the Registry and its mission, its development into a knowledgebase for hPSC and the current status of hPSC‐focussed databases. The data categories available in hPSCreg are detailed. In addition, sharing and hurdles to data sharing on a global level are described.ConclusionsAn outlook is provided on the establishment of digital representatives of donors using hybrids of data and hPSC‐based biological models, and how this can also be used to reposition databases as mediators between donors and researchers.

hPSCreg as a data hub for pluripotent stem cells: Key utility and function.  相似文献   
957.
Acute lung injury (ALI) is a potentially life-threatening, devastating disease with an extremely high rate of mortality. The underlying mechanism of ALI is currently unclear. In this study, we aimed to confirm the hub genes associated with ALI and explore their functions and molecular mechanisms using bioinformatics methods. Five microarray datasets available in GEO were used to perform Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs) and the key genes were identified via the protein-protein interaction (PPI) network. Lipopolysaccharide intraperitoneal injection was administered to establish an ALI model. Overall, 40 robust DEGs, which are mainly involved in the inflammatory response, protein catabolic process, and NF-κB signaling pathway were identified. Among these DEGs, we identified two genes associated with ALI, of which the CAV-1/NF-κB axis was significantly upregulated in ALI, and was identified as one of the most effective targets for ALI prevention. Subsequently, the expression of CAV-1 was knocked down using AAV-shCAV-1 or CAV-1-siRNA to study its effect on the pathogenesis of ALI in vivo and in vitro. The results of this study indicated that CAV-1/NF-κB axis levels were elevated in vivo and in vitro, accompanied by an increase in lung inflammation and autophagy. The knockdown of CAV-1 may improve ALI. Mechanistically, inflammation was reduced mainly by decreasing the expression levels of CD3 and F4/80, and activating autophagy by inhibiting AKT/mTOR and promoting the AMPK signaling pathway. Taken together, this study provides crucial evidence that CAV-1 knockdown inhibits the occurrence of ALI, suggesting that the CAV-1/NF-κB axis may be a promising therapeutic target for ALI treatment.Subject terms: Cell signalling, Respiratory tract diseases  相似文献   
958.
Recovering phylogenetic relationships in lineages experiencing intense diversification has always been a persistent challenge in evolutionary studies, including in Gentiana section Chondrophyllae sensu lato (s.l.). Indeed, this subcosmopolitan taxon encompasses more than 180 mostly annual species distributed around the world. We sequenced and assembled 22 new plastomes representing 21 species in section Chondrophyllae s.l. In addition to previously released plastome data, our study includes all main lineages within the section. We reconstructed their phylogenetic relationships based on protein‐coding genes and recombinant DNA (rDNA) cistron sequences, and then investigated plastome structural evolution as well as divergence time. Despite an admittedly humble species cover overall, we recovered a well‐supported phylogenetic tree based on plastome data, and found significant discordance between phylogenetic relationships and taxonomic treatments. Our results show that G. capitata and G. leucomelaena diverged early within the section, which is then further divided into two clades. The divergence time estimation showed that section Chondrophyllae s.l. evolved in the second half of the Oligocene. We found that section Chondrophyllae s.l. had the smallest average plastome size (128 KB) in tribe Gentianeae (Gentianaceae), with frequent gene and sequence losses such as the ndh complex and its flanking regions. In addition, we detected both expansion and contraction of the inverted repeat (IR) regions. Our study suggests that plastome degradation parallels the diversification of this group, and illustrates the strong discordance between phylogenetic relationships and taxonomic treatments, which now need to be carefully revised.  相似文献   
959.
Hepatocellular carcinoma is one of the most common malignant tumors.M6A is a novel epigenetic modification that have been emerged as vital regulators for the progression of HCC. However, the regulatory role, clinical significance and the details of the modification, such as the impact on the local tumor environment, remain largely unclear. Our study showed that ALKBH5 was highly expressed in HCC and high ALKBH5 expression predicted a worse prognosis of HCC patients. Prediction of ALKBH5 function by tissue samples and single cell sequencing Gene Set Variation Analysis. Primary CD3 + T lymphocytes and bone marrow-derived macrophages were used to evaluate the effect of ALKBH5 on immune microenvironment. The results indicated that ALKBH5 promote HCC cell proliferation, metastasis and PD-L1+macrophage recruitment. Mechanistically the results showed that ALKBH5 regulates MAP3K8 expression in a m6A dependent manner which mediates the proliferation and metastasis of HCC cells. ALKBH5 also promotes the activation of JNK and ERK pathways through upregulating MAP3K8, thus regulating the expression of IL-8 and promoting macrophage recruitment. Taken together, these data show that ALKBH5 promotes HCC growth, metastasis and macrophage recruitment through ALKBH5/MAP3K8 axis and it may serve as a potential diagnostic marker and target for treatment of HCC patients.  相似文献   
960.
宋芳  涂晨  朱濛  刘颖  骆永明 《微生物学通报》2017,44(11):2557-2566
【目的】阐明紫金牛叶杆菌Phyllobacterium myrsinacearum RC6b及其诱变菌株对二苯砷酸(Diphenylarsinic acid,DPAA)的降解特征与代谢产物。【方法】以紫金牛叶杆菌RC6b为出发菌株,分别以蔗糖、葡萄糖和乙酸钠为外加碳源,优化共代谢降解条件;采用亚硝基胍(N-methyl-N′-nitro-N-nitrosoguanidine,NTG)对出发菌株进行化学诱变,比较诱变前后菌株对DPAA降解能力的变化,鉴定诱变菌株对DPAA的降解代谢产物。【结果】以DPAA为唯一碳源时,培养28 d后RC6b菌株对DPAA的降解率低于2%;分别添加蔗糖、葡萄糖和乙酸钠为外加碳源培养28 d后,DPAA的降解率显著提高,分别达到14.08%、15.21%和15.05%;采用250μg/m L的NTG诱变后获得3株诱变菌,在以DPAA为唯一碳源培养28 d后,3株诱变菌对DPAA的降解率与出发菌株相比均显著提高,其中N-RC6b2对DPAA的降解率最高,达36.71%;代谢产物鉴定结果表明,诱变菌株N-RC6b2对DPAA的代谢产物中有单羟基化DPAA的生成。【结论】RC6b出发菌株难以直接利用DPAA为唯一碳源生长,外加蔗糖、葡萄糖和乙酸钠等共代谢碳源可显著提高菌株RC6b对DPAA的降解率;NTG化学诱变可进一步提高RC6b菌株对DPAA的降解效果,代谢产物为单羟基化DPAA。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号