首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31236篇
  免费   2826篇
  国内免费   1008篇
  2023年   199篇
  2022年   458篇
  2021年   759篇
  2020年   557篇
  2019年   678篇
  2018年   789篇
  2017年   619篇
  2016年   950篇
  2015年   1521篇
  2014年   1661篇
  2013年   2004篇
  2012年   2293篇
  2011年   2201篇
  2010年   1426篇
  2009年   1117篇
  2008年   1575篇
  2007年   1493篇
  2006年   1400篇
  2005年   1287篇
  2004年   1173篇
  2003年   1146篇
  2002年   1004篇
  2001年   870篇
  2000年   805篇
  1999年   724篇
  1998年   333篇
  1997年   291篇
  1996年   257篇
  1995年   222篇
  1994年   236篇
  1993年   180篇
  1992年   406篇
  1991年   390篇
  1990年   334篇
  1989年   368篇
  1988年   310篇
  1987年   262篇
  1986年   249篇
  1985年   266篇
  1984年   189篇
  1983年   171篇
  1982年   135篇
  1981年   133篇
  1979年   161篇
  1978年   121篇
  1977年   146篇
  1976年   115篇
  1975年   131篇
  1974年   145篇
  1973年   122篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
Porphyromonas gingivalis is a major pathogen in the initiation and progression of periodontal disease, which is recognized as a common complication of diabetes. ICAM‐1 expression by human gingival fibroblasts (HGFs) is crucial for regulating local inflammatory responses in inflamed periodontal tissues. However, the effect of P. gingivalis in a high‐glucose situation in regulating HGF function is not understood. The P. gingivalis strain CCUG25226 was used to study the mechanisms underlying the modulation of HGF ICAM‐1 expression by invasion of high‐glucose‐treated P. gingivalis (HGPg). A high‐glucose condition upregulated fimA mRNA expression in P. gingivalis and increased its invasion ability in HGFs. HGF invasion with HGPg induced increases in the expression of ICAM‐1. By using specific inhibitors and short hairpin RNA (shRNA), we have demonstrated that the activation of p38 MAPK and Akt pathways is critical for HGPg‐induced ICAM‐1 expression. Luciferase reporters and chromatin immunoprecipitation assays suggest that HGPg invasion increases NF‐κB‐ and Sp1‐DNA‐binding activities in HGFs. Inhibition of NF‐κB and Sp1 activations blocked the HGPg‐induced ICAM‐1 promoter activity and expression. The effect of HGPg on HGF signalling and ICAM‐1 expression is mediated by CXC chemokine receptor 4 (CXCR4). Our findings identify the molecular pathways underlying HGPg‐dependent ICAM‐1 expression in HGFs, providing insight into the effect of P. gingivalis invasion in HGFs.  相似文献   
992.
The oral and intestinal host tissues both carry a heavy microbial burden. Although commensal bacteria contribute to healthy intestinal tissue structure and function, their contribution to oral health is poorly understood. A crucial component of periodontal health is the recruitment of neutrophils to periodontal tissue. To elucidate this process, gingival tissues of specific‐pathogen‐free and germ‐free wild‐type mice and CXCR2KO and MyD88KO mice were examined for quantitative analysis of neutrophils and CXCR2 chemoattractants (CXCL1, CXCL2). We show that the recruitment ofneutrophils to the gingival tissue does not require commensal bacterial colonization but is entirely dependent on CXCR2 expression. Strikingly, however, commensal bacteria selectively upregulate the expression of CXCL2, but not CXCL1, in a MyD88‐dependent way that correlates with increased neutrophil recruitment as compared with germ‐free conditions. This is the first evidence that the selective use of chemokine receptor ligands contributes to neutrophil homing to healthy periodontal tissue.  相似文献   
993.
Some of the most devastating plant and animal pathogens belong to the oomycete class. The cell walls of these microorganisms represent an excellent target for disease control, but their carbohydrate composition is elusive. We have undertaken a detailed cell wall analysis in 10 species from 2 major oomycete orders, the Peronosporales and the Saprolegniales, thereby unveiling the existence of 3 clearly different cell wall types: type I is devoid of N-acetylglucosamine (GlcNAc) but contains glucuronic acid and mannose; type II contains up to 5% GlcNAc and residues indicative of cross-links between cellulose and 1,3-β-glucans; type III is characterized by the highest GlcNAc content (>5%) and the occurrence of unusual carbohydrates that consist of 1,6-linked GlcNAc residues. These 3 cell wall types are also distinguishable by their cellulose content and the fine structure of their 1,3-β-glucans. We propose a cell wall paradigm for oomycetes that can serve as a basis for the establishment of cell wall architectural models and the further identification of cell wall subtypes. This paradigm is complementary to morphological and molecular criteria for taxonomic grouping and provides useful information for unraveling poorly understood cell wall carbohydrate biosynthetic pathways through the identification and characterization of the corresponding enzymes.  相似文献   
994.
995.
Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs.  相似文献   
996.

Objective

This study aims to investigate in vitro the effect of the VDR agonist BXL-01-0029 onto IFNγ/TNFα-induced CXCL10 secretion by human skeletal muscle cells compared to elocalcitol (VDR agonist), methylprednisolone, methotrexate, cyclosporin A, infliximab and leflunomide; to assess in vivo circulating CXCL10 level in subjects at time of diagnosis with IMs, before therapy, together with TNFα, IFNγ, IL-8, IL-6, MCP-1, MIP-1β and IL-10, vs. healthy subjects.

Methods

Human fetal skeletal muscle cells were used for in vitro studies; ELISA and Bio-Plex were used to measure cell supernatant and IC50 determination or serum cytokines; Western blot and Bio-Plex were for cell signaling analysis.

Results

BXL-01-0029 decreased with the highest potency IFNγ/TNFα-induced CXCL10 protein secretion and targeted cell signaling downstream of TNFα in human skeletal muscle cells; CXCL10 level was the highest in sera of subjects diagnosed with IMs before therapy and the only one significantly different vs. healthy controls.

Conclusions

Our in vitro and in vivo data, while confirm the relevance of CXCL10 in IMs, suggested BXL-01-0029 as a novel pharmacological tool for IM treatment, hypothetically to be used in combination with the current immunosuppressants to minimize side effects.  相似文献   
997.

Objectives

Oxidized low-density lipoproteins (oxLDL) and oxidized low-density lipoprotein autoantibodies (OLAB) have been detected in human plasma and atherosclerotic lesions. OLAB appear to play a role in the clearance of oxLDL from circulation. Higher levels of OLAB appear to be associated with a reduced risk of a wide range of cardiovascular diseases. We investigated the prognostic value of plasma oxLDL and OLAB in patients undergoing primary coronary balloon angioplasty for acute ST-elevation myocardial infarction (STEMI).

Methods

Plasma oxLDL and OLAB concentrations were measured in 56 patients with acute STEMI before primary angioplasty, and then 3 days, 7 days and 1 month after the acute event. Follow-up angiography was repeated 6 months later to detect the presence of restensosis (defined as >50% luminal diameter stenosis). The thrombolysis in myocardial infarction (TIMI) risk score was calculated to determine the relationship between OLAB/oxLDL ratio and TIMI risk scores.

Results

Of the 56 patients, 18 (31%) had angiographic evidence of restenosis. Plasma OLAB concentrations were significantly lower in the restenosis group before angioplasty (181±114 vs. 335±257 U/L, p = 0.003), and at day 3 (155±92 vs. 277±185 U/L, p<0.001) and day 7 (177±110 vs. 352±279 U/L, p<0.001) after the acute event. There was no difference in oxLDL concentration between the two groups. The ratio of OLAB/oxLDL positively correlated with TIMI risk scores before angioplasty (p for trend analysis, p = 0.004), at day 3 (p = 0.008) and day 7 (p<0.001) after STEMI.

Significance

A relative deficit of OLAB, and hence likely impaired clearance of oxLDL, is associated with the risk of arterial restenosis after primary angioplasty for acute STEMI.  相似文献   
998.
Perfluorooctane sulfonate (PFOS) poses potential risks to reproduction and development. Mouse embryonic stem cells (mESCs) are ideal models for developmental toxicity testing of environmental contaminants in vitro. However, the mechanism by which PFOS affects early embryonic development is still unclear. In this study, mESCs were exposed to PFOS for 24 h, and then general cytotoxicity and pluripotency were evaluated. MTT assay showed that neither PFOS (0.2 µM, 2 µM, 20 µM, and 200 µM) nor control medium (0.1% DMSO) treatments affected cell viability. Furthermore, there were no significant differences in cell cycle and apoptosis between the PFOS treatment and control groups. However, we found that the mRNA and protein levels of pluripotency markers (Sox2, Nanog) in mESCs were significantly decreased following exposure to PFOS for 24 h, while there were no significant changes in the mRNA and protein levels of Oct4. Accordingly, the expression levels of miR-145 and miR-490-3p, which can regulate Sox2 and Nanog expressions were significantly increased. Chrm2, the host gene of miR-490-3p, was positively associated with miR-490-3p expression after PFOS exposure. Dual luciferase reporter assay suggests that miR-490-3p directly targets Nanog. These results suggest that PFOS can disturb the expression of pluripotency factors in mESCs, while miR-145 and miR-490-3p play key roles in modulating this effect.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号