The small cryptic plasmid pMB1 (1.9 kb), previously isolated from Bifidobacterium longum, has been characterized by physical mapping. Two cloning vectors, pMR3 and pDG7, carrying chloramphenicol and ampicillin resistances derived from pJH101, have been electroporated in Escherichia coli. 相似文献
Glioblastomas (GBMs) are the most frequent primary malignancies in the central nervous system. Aberrant activation of WNT/β-catenin signaling pathways is critical for GBM malignancy. However, the regulation of WNT/β-catenin signaling cascades remains unclear. Presently, we observed the increased expression of ZEB2 and the decreased expression of miR-637 in GBM. The expression of miR-637 was negatively correlated with ZEB2 expression. miR-637 overexpression overcame the ZEB2-enhanced cell proliferation and G1/S phase transition. Besides, miR-637 suppressed the canonical WNT/β-catenin pathways by targeting WNT7A directly. Gain- and loss-of-function experiments with U251 mice demonstrated that miR-637 inhibited cell proliferation and arrested the G1/S phase transition, leading to tumor growth suppression. The collective findings suggest that ZEB2 and WNT/β-catenin cascades merge at miR-637, and the ectopic expression of miR-637 disturbs ZEB2/WNT/β-catenin-mediated GBM growth. The findings provide new clues for improving β-catenin-targeted therapy against GBM.
d-Aspartate (d-Asp) is an endogenous amino acid present in the central nervous system and endocrine glands of various animal taxa. d-Asp is implicated in neurotransmission, physiology of learning, and memory processes. In gonads, it plays a crucial role in sex hormone synthesis. We have investigated the effects of chronic (30 days d-Asp drinking solution) and acute (i.p. injection of 2 μmol/g bw d-Asp) treatments on sex steroid synthesis in rat brain. Furthermore, to verify the direct effect of d-Asp on neurosteroidogenic enzyme activities, brain homogenates were incubated with different substrates (cholesterol, progesterone, or testosterone) with or without the addition of d-Asp. Enzyme activities were measured by evaluating the in vitro conversion rate of (i) cholesterol to progesterone, testosterone, and 17β-estradiol, (ii) progesterone to testosterone and 17β-estradiol, (iii) testosterone to 17β-estradiol. We found that d-Asp oral administration produced an increase of approximately 40% in progesterone, 110% in testosterone, and 35% in 17β-estradiol. Similarly, the results of the acute experiment showed that at 30 min after d-Asp treatment, the progesterone, testosterone, and 17β-estradiol levels increased by 29–35%, and at 8 h they further increased by a 100% increment. In vitro experiments demonstrate that the addition of d-Asp to brain homogenate + substrate induces a significant increase in progesterone, testosterone and 17β-estradiol suggesting that the amino acid upregulates the local activity of steroidogenic enzymes. 相似文献
Traditional Informed Consent is becoming increasingly inadequate, especially in the context of research biobanks. How much information is needed by patients for their consent to be truly informed? How does the quality of the information they receive match up to the quality of the information they ought to receive? How can information be conveyed fairly about future, non‐predictable lines of research? To circumvent these difficulties, some scholars have proposed that current consent guidelines should be reassessed, with trust being used as a guiding principle instead of information. Here, we analyse one of these proposals, based on a Participation Pact, which is already being offered to patients at the Istituto Europeo di Oncologia, a comprehensive cancer hospital in Milan, Italy. 相似文献
Three previously undescribed diterpenoids, helioscopnoids A–C, and eight known compounds were isolated from the whole plants of Euphorbia helioscopia. Their structures were established by extensive analysis of spectra and data comparison with previous literatures. Among them, compound 4 was identified as 24,24-dimethoxy-25,26,27-trinoreuphan-3β-ol with revised configurations of C-13, C-14, and C-17 (13R*, 14R*, 17R*). Cytotoxicity assays revealed that all compounds exhibited varying levels of cytotoxicity against H1975 cells, with compound 9 displaying the most potent activity, as indicated by cell viability rates of 18.13 % and 20.76 % at concentrations of 20 μM and 5 μM, respectively. This study expands the understanding of E. helioscopia terpenoids’ structural diversity and biological activities, contributing to the exploration of potential therapeutic applications. 相似文献
Synaptic transmission is the key system for the information transfer and elaboration among neurons. Nevertheless, a synapse is not a standing alone structure but it is a part of a population of synapses inputting the information from several neurons on a specific area of the dendritic tree of a single neuron. This population consists of excitatory and inhibitory synapses the inputs of which drive the postsynaptic membrane potential in the depolarizing (excitatory synapses) or depolarizing (inhibitory synapses) direction modulating in such a way the postsynaptic membrane potential. The postsynaptic response of a single synapse depends on several biophysical factors the most important of which is the value of the membrane potential at which the response occurs. The concurrence in a specific time window of inputs by several synapses located in a specific area of the dendritic tree can, consequently, modulate the membrane potential such to severely influence the single postsynaptic response. The degree of modulation operated by the synaptic population depends on the number of synapses active, on the relative proportion between excitatory and inbibitory synapses belonging to the population and on their specific mean firing frequencies. In the present paper we show results obtained by the simulation of the activity of a single Glutamatergic excitatory synapse under the influence of two different populations composed of the same proportion of excitatory and inhibitory synapses but having two different sizes (total number of synapses). The most relevant conclusion of the present simulations is that the information transferred by the single synapse is not and independent simple transition between a pre- and a postsynaptic neuron but is the result of the cooperation of all the synapses which concurrently try to transfer the information to the postsynaptic neuron in a given time window. This cooperativeness is mainly operated by a simple mechanism of modulation of the postsynaptic membrane potential which influences the amplitude of the different components forming the postsynaptic excitatory response. 相似文献