首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   8篇
  167篇
  2018年   2篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   8篇
  2011年   5篇
  2010年   15篇
  2009年   6篇
  2008年   8篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1975年   1篇
  1974年   2篇
  1973年   6篇
  1972年   2篇
  1971年   3篇
  1969年   1篇
  1968年   1篇
  1960年   1篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
  1956年   3篇
  1955年   1篇
  1954年   4篇
  1953年   1篇
  1952年   2篇
  1951年   4篇
  1950年   6篇
  1949年   2篇
  1948年   1篇
  1946年   1篇
  1944年   1篇
  1927年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.
Understanding the genetic basis of adaptation in response to environmental variation is fundamental as adaptation plays a key role in the extension of ecological niches to marginal habitats and in ecological speciation. Based on the assumption that some genomic markers are correlated to environmental variables, we aimed to detect loci of ecological relevance in the alpine plant Arabis alpina L. sampled in two regions, the French (99 locations) and the Swiss (109 locations) Alps. We used an unusually large genome scan [825 amplified fragment length polymorphism loci (AFLPs)] and four environmental variables related to temperature, precipitation and topography. We detected linkage disequilibrium among only 3.5% of the considered AFLP loci. A population structure analysis identified no admixture in the study regions, and the French and Swiss Alps were differentiated and therefore could be considered as two independent regions. We applied generalized estimating equations (GEE) to detect ecologically relevant loci separately in the French and Swiss Alps. We identified 78 loci of ecological relevance (9%), which were mainly related to mean annual minimum temperature. Only four of these loci were common across the French and Swiss Alps. Finally, we discuss that the genomic characterization of these ecologically relevant loci, as identified in this study, opens up new perspectives for studying functional ecology in A. alpina, its relatives and other alpine plant species.  相似文献   
25.
Protoplasts and L-type growth of Escherichia coli   总被引:20,自引:22,他引:20       下载免费PDF全文
  相似文献   
26.
A simple apparatus for vertical.,in situ, polyacrylamide or agarose gel casting as well as for the subsequent electrophoresis is described. The apparatus is completely leakproof and does not require any special device like clamps, O-rings, gaskets, grease etc. for sealing. Slab gels of various thickness (0.04 to 1.0 cm) can be made and the apparatus can be used for analytical or preparative purposes. Gel rods can also be cast and run in the device. Forward as well as reverse polarity electrophoresis of a sample can be run simultaneously in the apparatus. NCL Communication No.: 3077.  相似文献   
27.
28.
Rhodopsin, the pigment of the retinal rods, can be bleached either by light or by high temperature. Earlier work had shown that when white light is used the bleaching rate does not depend on temperature, and so must be independent of the internal energy of the molecule. On the other hand thermal bleaching in the dark has a high temperature dependence from which one can calculate that the reaction has an apparent activation energy of 44 kg. cal. per mole. It has now been shown that the bleaching rate of rhodopsin becomes temperature-dependent in red light, indicating that light and heat cooperate in activating the molecule. Apparently thermal energy is needed for bleaching at long wave lengths where the quanta are not sufficiently energy-rich to bring about bleaching by themselves. The temperature dependence appears at 590 mµ. This is the longest wave length at which bleaching by light proceeds without thermal activation, and corresponds to a quantum energy of 48.5 kg. cal. per mole. This value of the minimum energy to bleach rhodopsin by light alone is in agreement with the activation energy of thermal bleaching in the dark. At wave lengths between 590 and 750 mµ, the longest wave length at which the bleaching rate was fast enough to study, the sum of the quantum energy and of the activation energy calculated from the temperature coefficients remains between 44 and 48.5 kg. cal. This result shows that in red light the energy deficit of the quanta can be made up by a contribution of thermal energy from the internal degrees of freedom of the rhodopsin molecule. The absorption spectrum of rhodopsin, which is not markedly temperature-dependent at shorter wave lengths, also becomes temperature-dependent in red light of wave lengths longer than about 570 to 590 mµ. The temperature dependence of the bleaching rate is at least partly accounted for by the temperature coefficient of absorption. There is some evidence that the temperature coefficient of bleaching is somewhat greater than the temperature coefficient of absorption at wave lengths longer than 590 mmicro;. This means that the thermal energy of the molecule is a more critical factor in bleaching than in absorption. It shows that some of the molecules which absorb energy-deficient quanta of red light are unable to supply the thermal component of the activation energy needed for bleaching, so bringing about a fall in the quantum efficiency. The experiments show that there is a gradual transition between the activation of rhodopsin by light and the activation by internal energy. It is suggested that energy can move freely between the prosthetic group and the protein moiety of the molecule. In this way a part of the large amount of energy in the internal degrees of freedom of rhodopsin could become available to assist in thermal activation. Assuming that the minimum energy required for bleaching is 48.5 kg. cal., an equation familiar in the study of unimolecular reaction has been used to estimate the number of internal degrees of freedom, n, involved in supplying the thermal component of the activation energy when rhodopsin is bleached in red light. It was found that n increases from 2 at 590 mµ to a minimum value of 15 at 750 mµ. One wonders what value n has at 1050 mµ, where vision still persists, and where rhodopsin molecules may supply some 16 kg. cal. of thermal energy per mole in order to make up for the energy deficit of the quanta.  相似文献   
29.
Abstract: Phylogenetic reconstruction of the Upper Barremian ammonite genus Gassendiceras (Gassendiceratinae) was performed using a cladistic analysis incorporating continuous data. Some morphological features were found to vary identically among all the analysed species and therefore carry no phylogenetic information (= symplesiomorphic). The single obtained cladogram allows interpreting the evolution of the Gassendiceras as an anagenetic succession of eight species, in stratigraphic order of appearance, Gassendiceras multicostatum, G. alpinum, G. hoheneggeri, G. rebouleti, G. bosellii, G. quelquejeui, G. coulletae and G. enayi. The clade Pseudoshasticrioceras/Imerites is derived from G. enayi, so the genus Gassendiceras appears to be paraphyletic. But here, we accept this fact as the best evolutive classification. The evolution over time of Gassendiceras is modulated by some processes, which could have constrained the inferred phylogenetic pattern with the drift of the global variability towards the most gracile forms over time. It is tempting to interpret this evolution as a constant selection over time of the Gassendiceras modulated by environmental control due to eustatic variation across a transgressive sequence. Thus, the most peramorphic (gracile) individuals seemed favoured at the expense of those most robust (paedomorphic).  相似文献   
30.
DURING each step of peptide chain elongation the ribosome shifts up one triplet along the messenger RNA with concomitant movement of the peptidyl-transfer RNA from the donor to the acceptor site. This process, commonly known as translocation, is triggered by a supernatant protein, factor G, which in association with the ribosome cleaves GTP into GDP and inorganic phosphate1,2 and it has been argued that the energy liberated in this reaction is used “to carry the complex one triplet forward”3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号