首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   10篇
  243篇
  2023年   1篇
  2022年   9篇
  2021年   13篇
  2020年   4篇
  2019年   6篇
  2018年   13篇
  2017年   4篇
  2016年   9篇
  2015年   12篇
  2014年   18篇
  2013年   16篇
  2012年   20篇
  2011年   12篇
  2010年   13篇
  2009年   7篇
  2008年   4篇
  2007年   12篇
  2006年   12篇
  2005年   11篇
  2004年   5篇
  2003年   8篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1994年   2篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有243条查询结果,搜索用时 15 毫秒
191.
Dead-End (DND1) is an RNA-binding protein involved in translational regulation. Defects in DND1 gene causes germ cell tumors and sterility in rodents. Experimental studies with human somatic cancer cells indicate that DND1 has anti-proliferative and pro-apoptotic function in some while oncogenic function in other cells. We examined The Cancer Genome Atlas data for gene alterations and gene expression changes in DND1 in a variety of human cancers. We found that DND1 is amplified, deleted or mutated in multiple human cancers. In different cancers, DND1 alteration correlates with increased diagnosis age of patients, shift in tumor spectrum or change of tumor sites and in some cases is significantly associated with worse survival for cancer patients. For 15 cancers, we retrieved expression data of thousands of genes that co-expressed with DND1. We found that these cancers contain different percentage of genes that are positively or negatively co-expressed with DND1. Ingenuity Pathway Analysis was performed to explore the biological implications of these genes. More than 10 canonical pathways were identified and each cancer type exhibits unique pathway profiles. Comparison analysis across all 15 cancer types showed that some cancers exhibit strikingly similar profiles of DND1-correlated signaling pathway activation or suppression. Our data reinforce the notion that the biological role of DND1 is cell-type specific and suggest that DND1 may play opposing role by exerting anti-proliferative effects in some cancer cells while being pro-proliferative in others. Our study provides valuable insights to direct experimental investigations of DND1 function in somatic cancers.  相似文献   
192.
Tendons and ligaments are important structures in the musculoskeletal system. Ligaments connect various bones and provide stability in complex movements of joints in the knee. Tendon is made of dense connective tissue and transmits the force of contraction from muscle to bone. They are injured due to direct trauma in sports or roadside accidents. Tendon healing after repair is often poor due to the formation of fibro vascular scar tissues with low mechanical property. Regenerative techniques such as PRP (platelet-rich plasma), stem cells, scaffolds, gene therapy, cell sheets, and scaffolds help augment repair and regenerate tissue in this context. Therefore, it is of interest to document known data (repair process, tissue regeneration, mechanical strength, and clinical outcome) on applied regenerative medicine in tendon healing.  相似文献   
193.
Two novel Gram-staining positive, rod-shaped, moderately halotolerant, endospore forming bacterial strains 5.5LF 38TD and 5.5LF 48TD were isolated and taxonomically characterized from a landfill in Chandigarh, India. The analysis of 16S rRNA gene sequences of the strains confirmed their closest identity to Bacillus thermotolerans SgZ-8T with 99.9% sequence similarity. A comparative phylogenetic analysis of strains 5.5LF 38TD, 5.5LF 48TD and B. thermotolerans SgZ-8T confirmed their separation into a novel genus with B. badius and genus Domibacillus as the closest phylogenetic relatives. The major fatty acids of the strains are iso-C15:0 and iso-C16:0 and MK-7 is the only quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The digital DNA-DNA hybridization (DDH) and ortho average nucleotide identity (ANI) values calculated through whole genome sequences indicated that the three strains showed low relatedness with their phylogenetic neighbours. Based on evidences from phylogenomic analyses and polyphasic taxonomic characterization we propose reclassification of the species B. thermotolerans into a novel genus named Quasibacillus thermotolerans gen. nov., comb. nov with the type strain SgZ-8T (= CCTCC AB2012108T = KACC 16706T). Further our analyses also revealed that B. encimensis SGD-V-25T is a later heterotypic synonym of Bacillus badius DSM 23T.  相似文献   
194.
The present study aimed to quantify the methyl esters of lenoleic acid (LA), γ-lenolenic acid (LNA) and oleic acid (OL) in the oil of Brassica napus mutants. Five stable mutants (ROO-75/1, ROO-100/6, ROO-125/12, ROO-125/14, and ROO-125/17)of B. napus cv. 'Rainbow' (P) and three mutants (W97-95116, W97-0.75/11 and W97-.075/13) of B. napus cv. 'Westar' (P) at M6 stage, exhibiting better yield and yield components, were analyzed for essential fatty acids. The highest seed yield was observed in the mutant (ROO-100/6) followed by ROO-125/14 of Rainbow, that is, 34% and 32% higher than their parent plants, respectively. Westar mutant W97-75/11 also showed 30% higher seed yield than its parent plant. High performance liquid chromatography analysis of the composition of fatty acids indicated that OL was the most dominant fatty acid, ranging from 39.1 to 66.3%; LA was second (15.3-41.6%) and LNA was third (18.1-28.9%). Mutant ROO-125/14 showed higher OL contents than parent (Rainbow). These results are expected to support the approval of ROO-125/14 in the National Uniform Varietal Yield Trials (NUVYT) as a new variety based on high oil quality.  相似文献   
195.
196.
197.
198.
An in-frame deletion mutation in Epidermal Growth Receptor (EGFR), ΔEGFR is a common and potent oncogene in glioblastoma (GBM), promoting growth and survival of cancer cells. This mutated receptor is ligand independent and constitutively active. Its activity is low in intensity and thought to be qualitatively different from acutely ligand stimulated wild-type receptor implying that the preferred downstream targets of ΔEGFR play a significant role in malignancy. To understand the ΔEGFR signal, we compared it to that of a kinase-inactivated mutant of ΔEGFR and wild-type EGFR with shotgun phosphoproteomics using an electron-transfer dissociation (ETD) enabled ion trap mass spectrometer. We identified and quantified 354 phosphopeptides corresponding to 249 proteins. Among the ΔEGFR-associated phosphorylations were the previously described Gab1, c-Met and Mig-6, and also novel phosphorylations including that of STAT5 on Y694/9. We have confirmed the most prominent phosphorylation events in cultured cells and in murine xenograft models of glioblastoma. Pathway analysis of these proteins suggests a preference for an alternative signal transduction pathway by ΔEGFR compared to wild-type EGFR. This understanding will potentially benefit the search for new therapeutic targets for ΔEGFR expressing tumors.  相似文献   
199.
We describe here a highly efficient procedure for conditional mutagenesis in Plasmodium. The procedure uses the site-specific recombination FLP-FRT system of yeast and targets the pre-erythrocytic stages of the rodent Plasmodium parasite P. berghei, including the sporozoite stage and the subsequent liver stage. The technique consists of replacing the gene under study by an FRTed copy (i.e., flanked by FRT sites) in the erythrocytic stages of a parasite clone that expresses the flip (FLP) recombinase stage-specifically--called the 'deleter' clone. We present the available deleter clones, which express FLP at different times of the parasite life cycle, as well as the schemes and tools for constructing new deleter parasites. We also outline and discuss the various strategies for exchanging a wild-type gene with an FRTed copy and for generating conditional gene knockout or knockdown parasite clones. Finally, we detail the protocol for obtaining sporozoites that lack a protein of interest and for monitoring sporozoite-specific DNA excision and depletion of the target protein. The protocol should allow the functional analysis of any essential protein in the sporozoite, liver stage or hepatic merozoite stages of rodent Plasmodium parasites.  相似文献   
200.
Spinal muscular atrophy (SMA) is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC) lines generated from two Type I SMA subjects-one produced with lentiviral constructs and the second using a virus-free plasmid-based approach-recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号