首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   3篇
  2022年   2篇
  2021年   6篇
  2019年   5篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   8篇
  2012年   6篇
  2011年   4篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
11.
Several members of the paramyxovirus family constitute major human pathogens that, collectively, are responsible for major morbidity and mortality worldwide. In an effort to develop novel therapeutics against measles virus (MV), a prominent member of the paramyxovirus family, the authors report a high-throughput screening protocol that uses a nonrecombinant primary MV strain as targets. Implementation of the assay has yielded 60 hit candidates from a 137,500-entry library. Counterscreening and generation of dose-response curves narrows this pool to 35 compounds with active concentrations 500. Library mining for structural analogs of several confirmed hits combined with retesting of identified candidates reveals a high accuracy of primary hit identification. Eleven of the confirmed hits interfere with viral entry, whereas the remaining 24 compounds target postentry steps of the viral life cycle. Activity testing against selected members of the paramyxovirus family reveals 3 patterns of activity: 1) exclusively MV-specific blockers, 2) inhibitors of MV and related viruses of the same genus, and 3) broader range inhibitors with activity against a different Paramyxovirinae genus. Representatives of the last class may open avenues for the development of broad-range paramyxovirus inhibitors through hit-to-lead chemistry. ( Journal of Biomolecular Screening 2008:591-608).  相似文献   
12.

Background

Stem cell expansion and differentiation is the foundation of emerging cell therapy technologies. The potential applications of human neural progenitor cells (hNPCs) are wide ranging, but a normal cytogenetic profile is important to avoid the risk of tumor formation in clinical trials. FDA approved clinical trials are being planned and conducted for hNPC transplantation into the brain or spinal cord for various neurodegenerative disorders. Although human embryonic stem cells (hESCs) are known to show recurrent chromosomal abnormalities involving 12 and 17, no studies have revealed chromosomal abnormalities in cultured hNPCs. Therefore, we investigated frequently occurring chromosomal abnormalities in 21 independent fetal-derived hNPC lines and the possible mechanisms triggering such aberrations.

Methods and Findings

While most hNPC lines were karyotypically normal, G-band karyotyping and fluorescent in situ hybridization (FISH) analyses revealed the emergence of trisomy 7 (hNPC+7) and trisomy 19 (hNPC+19), in 24% and 5% of the lines, respectively. Once detected, subsequent passaging revealed emerging dominance of trisomy hNPCs. DNA microarray and immunoblotting analyses demonstrate epidermal growth factor receptor (EGFR) overexpression in hNPC+7 and hNPC+19 cells. We observed greater levels of telomerase (hTERT), increased proliferation (Ki67), survival (TUNEL), and neurogenesis (βIII-tubulin) in hNPC+7 and hNPC+19, using respective immunocytochemical markers. However, the trisomy lines underwent replicative senescence after 50–60 population doublings and never showed neoplastic changes. Although hNPC+7 and hNPC+19 survived better after xenotransplantation into the rat striatum, they did not form malignant tumors. Finally, EGF deprivation triggered a selection of trisomy 7 cells in a diploid hNPC line.

Conclusions

We report that hNPCs are susceptible to accumulation of chromosome 7 and 19 trisomy in long-term cell culture. These results suggest that micro-environmental cues are powerful factors in the selection of specific hNPC aneuploidies, with trisomy of chromosome 7 being the most common. Given that a number of stem cell based clinical trials are being conducted or planned in USA and a recent report in PLoS Medicine showing the dangers of grafting an inordinate number of cells, these data substantiate the need for careful cytogenetic evaluation of hNPCs (fetal or hESC-derived) before their use in clinical or basic science applications.  相似文献   
13.
14.
15.
The major concern with the use of some synthetic excipients is their safety towards biological tissues, hence influencing the reliability of products. With the aim to minimize dependency on highly toxic synthetic excipients, the present study was designed to deliver metronidazole (MNZ) into the colonic region for localized treatment of amoebiasis using natural polysaccharide-based drug delivery. Compression-coated tablets were prepared using water extractable natural polysaccharide from Trigonella foenum-graecum (FG). Physical properties of the tablets were evaluated and dissolution study was performed at pH 1.2, 6.8, and 7.4 with rat cecal material. Results indicate that all batches demonstrated pH-dependent drug release and prevented release into the stomach, allowing traces into the intestine and highest availability into the colon. A significant correlation (r2?=?0.975) was found between the coating levels of extracted polysaccharide and lag time release of drug. Gamma scintigraphy images of in vivo study conducted on human volunteers showed a small intestinal transit time, i.e., 3–5 (4.2?±?0.4) h and confirmed that the tablets reached the colon within 6–8 h. The present study revealed that the FG polysaccharide-based double compression tablets may be promising colon-specific drug carriers with reduced toxic effects of commonly used synthetic excipients.  相似文献   
16.

Background

There is no convincing data on the trends of hospitalizations, mortality, cost, and demographic variations associated with inpatient admissions for gastric cancer in the USA. The aim of this study was to use a national database of US hospitals to evaluate the trends associated with gastric cancer.

Methods

We analyzed the National Inpatient Sample (NIS) database for all patients in whom gastric cancer (ICD-9 code: 151.0, 151.1, 151.2, 151.3, 151.4, 151.5, 151.6, 151.8, 151.9) was the principal discharge diagnosis during the period, 2003–2014. The NIS is the largest publicly available all-payer inpatient care database in the US. It contains data from approximately eight million hospital stays each year. The statistical significance of the difference in the number of hospital discharges, length of stay, and hospital costs over the study period was determined by regression analysis.

Results

In 2003, there were 23,921 admissions with a principal discharge diagnosis of gastric cancer as compared to 21,540 in 2014 (P?<?0.01). The mean length of stay for gastric cancer decreased by 17% between 2003 and 2014 from 10.9?days to 8.95?days (P?<?0.01). However, during this period, the mean hospital charges increased significantly by 21% from $ 75,341 per patient in 2003 to $ 91,385 per patient in 2014 (P?<?0.001). There was a more significant reduction in mortality over a period of 11?years from 2428 (10.15%) in 2003 to 1345 (6.24%) in 2014 (P?<?0.01). The aggregate charges (i.e., “national bill”) for gastric cancer increased significantly from 1.79 bn $ to 1. 96 bn $ (P?<?0.001), despite decrease in hospitalization (inflation adjusted).

Conclusion

Although the number of inpatient admissions for gastric cancer have decreased over the past decade, the healthcare burden and cost related to it has increased significantly. Inpatient mortality is decreasing which is consistent with overall decrease in gastric cancer-related deaths. Cost increase associated with gastric cancer contributed significantly to the national healthcare bill.
  相似文献   
17.
Screening large populations for carriers of known or de novo rare single nucleotide polymorphisms (SNPs) is required both in Targeting induced local lesions in genomes (TILLING) experiments in plants and in screening of human populations. We previously suggested an approach that combines the mathematical field of compressed sensing with next‐generation sequencing to allow such large‐scale screening. Based on pooled measurements, this method identifies multiple carriers of heterozygous or homozygous rare alleles while using only a small fraction of resources. Its rigorous mathematical foundations allow scalable and robust detection, and provide error correction and resilience to experimental noise. Here we present a large‐scale experimental demonstration of our computational approach, in which we targeted a TILLING population of 1024 Sorghum bicolor lines to detect carriers of de novo SNPs whose frequency was less than 0.1%, using only 48 pools. Subsequent validation confirmed that all detected lines were indeed carriers of the predicted mutations. This novel approach provides a highly cost‐effective and robust tool for biologists and breeders to allow identification of novel alleles and subsequent functional analysis.  相似文献   
18.
Entamoeba histolytica, an early branching eukaryote, is the etiologic agent of amebiasis. Calcium plays a pivotal role in the pathogenesis of amebiasis by modulating the cytopathic properties of the parasite. However, the mechanistic role of Ca(2+) and calcium-binding proteins in the pathogenesis of E. histolytica remains poorly understood. We had previously characterized a novel calcium-binding protein (EhCaBP1) from E. histolytica. Here, we report the identification and partial characterization of an isoform of this protein, EhCaBP2. Both EhCaBPs have four canonical EF-hand Ca(2+) binding domains. The two isoforms are encoded by genes of the same size (402 bp). Comparison between the two genes showed an overall identity of 79% at the nucleotide sequence level. This identity dropped to 40% in the 75-nucleotide central linker region between the second and third Ca(2+) binding domains. Both of these genes are single copy, as revealed by Southern hybridization. Analysis of the available E. histolytica genome sequence data suggested that the two genes are non-allelic. Homology-based structural modeling showed that the major differences between the two EhCaBPs lie in the central linker region, normally involved in binding target molecules. A number of studies indicated that EhCaBP1 and EhCaBP2 are functionally different. They bind different sets of E. histolytica proteins in a Ca(2+)-dependent manner. Activation of endogenous kinase was also found to be unique for the two proteins and the Ca(2+) concentration required for their optimal functionality was also different. In addition, a 12-mer peptide was identified from a random peptide library that could differentially bind the two proteins. Our data suggest that EhCaBP2 is a new member of a class of E. histolytica calcium-binding proteins involved in a novel calcium signal transduction pathway.  相似文献   
19.
The Saccharomyces cerevisiae chromatin silencing factor Sir2 suppresses genomic instability and extends replicative life span. In contrast, we find that mouse embryonic fibroblasts (MEFs) deficient for SIRT1, a mammalian Sir2 homolog, have dramatically increased resistance to replicative senescence. Extended replicative life span of SIRT1-deficient MEFs correlates with enhanced proliferative capacity under conditions of chronic, sublethal oxidative stress. In this context, SIRT1-deficient cells fail to normally upregulate either the p19(ARF) senescence regulator or its downstream target p53. However, upon acute DNA damage or oncogene expression, SIRT1-deficient cells show normal p19(ARF) induction and cell cycle arrest. Together, our findings demonstrate an unexpected SIRT1 function in promoting replicative senescence in response to chronic cellular stress and implicate p19(ARF) as a downstream effector in this pathway.  相似文献   
20.
Activation of the extracellular signal-regulated kinases (ERK1/2; p42/p44 mitogen-activated protein kinase (MAPK)) is one of the most extensively studied signaling pathways not least because it occurs downstream of oncogenic RAS. Here, we take advantage of the wealth of experimental data available on the canonical RAS/RAF/MEK/ERK pathway of Bhalla et al. to test the utility of a newly developed nonlinear analysis algorithm designed to predict likelihood of cellular transformation. By using ERK phosphorylation as an "output signal", the method analyzes experimentally determined kinetic data and predicts putative oncogenes and tumor suppressor gene products impacting the RAS/MAPK module using a purely theoretical approach. This analysis identified several modifiers of ERK/MAPK activation described previously. In addition, several novel enzymes are identified which are not previously described to affect ERK/MAPK phosphorylation. Importantly, the nonlinear analysis enables a ranking of modifiers of MAPK activation predicting their relative importance in RAS-dependent oncogenesis. The results are compared with a linearized analysis based on sensitivity analysis about the steady state or metabolic control analysis (MCA). The results are favorable, pointing to the utility of first-order sensitivity analysis and MCA in the analysis of complex signaling networks for oncogenes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号