首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   7篇
  144篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   11篇
  2013年   11篇
  2012年   12篇
  2011年   11篇
  2010年   4篇
  2009年   6篇
  2008年   8篇
  2007年   9篇
  2006年   6篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   2篇
  1977年   1篇
  1967年   1篇
排序方式: 共有144条查询结果,搜索用时 10 毫秒
51.
The potent and selective 3-amido-4-anilinoquinoline CSF-1R inhibitor AZ683 suffered from cardiovascular liabilities, which were linked to the off-target activities of the compound and ion channel activity in particular. Less basic and less lipophilic examples from both the quinoline and cinnoline series demonstrated cleaner secondary pharmacology profiles. Cinnoline 31 retained the required potency and oral PK profile, and was progressed through the safety screening cascade to be nominated into development as AZD7507.  相似文献   
52.
The centriole is the core structure of centrosome and cilium. Failure to restrict centriole duplication to once per cell cycle has serious consequences and is commonly observed in cancer. Despite its medical importance, the mechanism of centriole formation is poorly understood. Asl was previously reported to be a centrosomal protein essential for centrosome function. Here we identify mecD, a severe loss-of-function allele of the asl gene, and demonstrate that it is required for centriole and cilia formation. Similarly, Cep152, the Asl ortholog in vertebrates, is essential for cilia formation and its function can be partially rescued by the Drosophila Asl. The study of Asl localization suggests that it is closely associated with the centriole wall, but is not part of the centriole structure. By analyzing the biogenesis of centrosomes in cells depleted of Asl, we found that, while pericentriolar material (PCM) function is mildly affected, Asl is essential for daughter centriole formation. The clear absence of several centriolar markers in mecD mutants suggests that Asl is critical early in centriole duplication.  相似文献   
53.
The extraction of genomic DNA is the crucial first step in large-scale epidemiological studies. Though there are many popular DNA isolation methods from human whole blood, only a few reports have compared their efficiencies using both end-point and real-time PCR assays. Genomic DNA was extracted from coronary artery disease patients using solution-based conventional protocols such as the phenol–chloroform/proteinase-K method and a non-phenolic non-enzymatic Rapid-Method, which were evaluated and compared vis-a-vis a commercially available silica column-based Blood DNA isolation kit. The appropriate method for efficiently extracting relatively pure DNA was assessed based on the total DNA yield, concentration, purity ratios (A260/A280 and A260/A230), spectral profile and agarose gel electrophoresis analysis. The quality of the isolated DNA was further analysed for PCR inhibition using a murine specific ATP1A3 qPCR assay and mtDNA/Y-chromosome ratio determination assay. The suitability of the extracted DNA for downstream applications such as end-point SNP genotyping, was tested using PCR-RFLP analysis of the AGTR1-1166A>C variant, a mirSNP having pharmacogenetic relevance in cardiovascular diseases. Compared to the traditional phenol–chloroform/proteinase-K method, our results indicated the Rapid-Method to be a more suitable protocol for genomic DNA extraction from human whole blood in terms of DNA quantity, quality, safety, processing time and cost. The Rapid-Method, which is based on a simple salting-out procedure, is not only safe and cost-effective, but also has the added advantage of being scaled up to process variable sample volumes, thus enabling it to be applied in large-scale epidemiological studies.  相似文献   
54.
55.
The Kulsi River, a major tributary of Brahmaputra River, N. India is reported to have resident population of Ganges river dolphin, Platanista gangetica (Roxburgh), which feeds on fishes and prawns. While surveying for the dolphins of the river, a number of fishes and prawns were collected. On identification, one of the prawns was found to be undescribed, and hence is described herein. The ecology of the river consisted of: temperature fluctuating widely from 15 to 28 °C, depth from 0.8 to 10 m, turbidity of 11-19 cm, sand mining @ 12,500 MT annually, and fish catch of 300-800 kg (from 1.5 km area). All these factors pose a great threat to the fish and prawn wealth of the river.Macrobrachium kulsiense sp. nov. is a very small sized prawn (maximum size - 34.5 mm in total length), exhibiting species-specific characters, such as highly elevated and moderately long rostrum with 9-12 dorsal teeth, a single ventral tooth, and percentage ratios of ischium, merus, carpus, palm, dactylus of first and second chelipeds (19.05:28.57:33.33:09.52:09.52 and 21.43:25.00:21.43:14.28:17.86, respectively). The species shows close similarity with Macrobrachium mirabile (Kemp). The females are larger than males, eggs are large in size (1.2×0.9 mm) and fecundity is low (15-20).  相似文献   
56.
57.
Red blood cell (RBC) transfusion is vital for the treatment of a number of acute and chronic medical problems such as thalassemia major and sickle cell anemia 1-3. Due to the presence of multitude of antigens on the RBC surface (~308 known antigens 4), patients in the chronic blood transfusion therapy develop alloantibodies due to the miss match of minor antigens on transfused RBCs 4, 5. Grafting of hydrophilic polymers such as polyethylene glycol (PEG) and hyperbranched polyglycerol (HPG) forms an exclusion layer on RBC membrane that prevents the interaction of antibodies with surface antigens without affecting the passage of small molecules such as oxygen ,glucose, and ions3. At present no method is available for the generation of universal red blood donor cells in part because of the daunting challenge presented by the presence of large number of antigens (protein and carbohydrate based) on the RBC surface and the development of such methods will significantly improve transfusion safety, and dramatically improve the availability and use of RBCs. In this report, the experiments that are used to develop antigen protected functional RBCs by the membrane grafting of HPG and their characterization are presented. HPGs are highly biocompatible compact polymers 6, 7, and are expected to be located within the cell glycocalyx that surrounds the lipid membrane 8, 9 and mask RBC surface antigens10, 11.  相似文献   
58.
Proteolysis is an irreversible post-translational modification that affects intra- and intercellular communication by modulating the activity of bioactive mediators. Key to understanding protease function is the system-wide identification of cleavage events and their dynamics in physiological contexts. Despite recent advances in mass spectrometry-based proteomics for high-throughput substrate screening, current approaches suffer from high false positive rates and only capture single states of protease activity. Here, we present a workflow based on multiplexed terminal amine isotopic labeling of substrates for time-resolved substrate degradomics in complex proteomes. This approach significantly enhances confidence in substrate identification and categorizes cleavage events by specificity and structural accessibility of the cleavage site. We demonstrate concomitant quantification of cleavage site spanning peptides and neo-N and/or neo-C termini to estimate relative ratios of noncleaved and cleaved forms of substrate proteins. By applying this strategy to dissect the matrix metalloproteinase 10 (MMP10) substrate degradome in fibroblast secretomes, we identified the extracellular matrix protein ADAMTS-like protein 1 (ADAMTSL1) as a direct MMP10 substrate and revealed MMP10-dependent ectodomain shedding of platelet-derived growth factor receptor alpha (PDGFRα) as well as sequential processing of type I collagen. The data have been deposited to the ProteomeXchange Consortium with identifier PXD000503.Historically regarded as a mechanism for unspecific degradation of proteins, proteolysis is now recognized as a specific irreversible post-translational modification that affects major intra- and intercellular signaling processes (1, 2). Proteases specifically process bioactive proteins, their receptors, and associated proteins in an interconnected interaction network termed the protease web (3). Dysregulation of the protease web might cause or result from pathologies, such as impaired tissue repair, cancer and neurodegenerative diseases. Therefore, a better understanding of the functions of individual proteases and their interconnections within proteolytic networks is a prerequisite for exploiting proteases as targets for therapeutic intervention (4).To address this issue, several powerful technologies have been developed for the system-wide discovery of protease substrates, i.e. substrate degradomes, in complex and active proteomes (5, 6). A common principle of these mass spectrometry-based methods is the enrichment and monitoring of N-terminal peptides (protein neo-N termini) that are newly generated by a test protease (7). Protein N termini are enriched from complex proteomes either by chemical tagging and affinity resins (positive selection) or by depletion of internal peptides (negative selection) (7). Both principles have been successfully applied in various studies to characterize N-terminomes and to identify protease substrates using in vitro or cell-based systems and more recently also in vivo (8, 9). Negative enrichment approaches were further extended to the analysis of protein C termini (10, 11) and have the general advantage of recording data on naturally blocked (e.g. acetylated) N termini and internal peptides in the same experiment (8).Even if successful in identifying novel proteolytic cleavage events, which could also be validated by orthogonal methods, high-throughput substrate discovery approaches potentially suffer from high numbers of false positive identifications, particularly when employing in vitro systems (12). These have been reduced by monitoring abundances of N-terminal peptides at multiple time points after incubation of a proteome with a test protease (12). In this SILAC-based approach the authors efficiently distinguished critical from bystander cleavages, but it was limited to three time points. Therefore, it did not allow recording kinetic profiles of the relative abundance of N-terminal peptides that are required for determination of apparent kinetic parameters for processing events. Agard et al. elegantly overcame this limitation by use of selected reaction monitoring (SRM)1 in combination with a positive N-terminal enrichment platform and determined apparent catalytic efficiencies for hundreds of caspase cleavage events in parallel (13). In a similar approach the same group characterized cellular responses to pro-apoptotic cancer drugs by recording time-courses for caspase-generated neo-N termini (14). Although very powerful and highly accurate in quantification, this method strongly exploited the canonical cleavage specificity of caspases after aspartate residues and required a two-stage process involving two types of mass spectrometers. Hence, it would be desirable to monitor the time-resolved generation of neo-N termini in complex proteomes in a single experiment by a simple and robust workflow in an unbiased manner.The development of such an analysis platform would require a reliable method for the system-wide characterization of protein N termini that is easy to perform, fast and highly multiplexible. All these criteria are met by iTRAQ-terminal amine isotopic labeling of substrates (TAILS), a multiplex N-terminome analysis technique that has been applied in 2plex and 4plex experiments to map the matrix metalloproteinase (MMP) 2 and MMP9 substrate degradomes in vitro (15) and most recently to quantitatively analyze the proteome and N-terminome of inflamed mouse skin in the presence or absence of the immune-modulatory protease MMP2 in vivo (8).Here, we exploited the multiplex capabilities of iTRAQ-TAILS by use of 8plex-iTRAQ reagents to monitor the generation of neo-N-terminal peptides by a test protease in complex samples over time. First, using GluC as a test protease with canonical cleavage specificity, we established a workflow for time-resolved substrate degradomics. Recording kinetic profiles significantly increased the confidence in identified cleavage events compared with binary systems and categorized primary cleavage specificities as well as secondary structure elements based on clusters of processing events with different efficiencies. By including data from before N-terminal enrichment, we extended our analysis to neo-C-terminal peptides and concomitantly monitored the generation of neo-N termini and neo-C termini as well as the decrease in abundance of the tryptic peptides spanning the cleavage sites in the same experiment. Next, we applied this approach to the time-resolved analysis of the hardly elucidated substrate degradome of matrix metalloproteinase 10 (MMP10). This important wound- and tumor-related protease is secreted by proliferating and migrating keratinocytes at the wound edge in close proximity to dermal fibroblasts and is also highly expressed in aggressive tumor cells (1618). Our analysis revealed MMP10-dependent shedding of the platelet-derived growth factor receptor alpha (PDGFRα), processing of ADAMTS-like protein 1 (ADAMTSL1) and multiple cleavages of type I collagen, which could be validated and classified by time-resolved abundance profiles of their corresponding neo-N termini.  相似文献   
59.
Differences in the aggregation and release of growth factors including matrix metalloproteinases (MMPs) after loss of ovarian hormones could contribute to an exaggerated response to injury in arteries of ovariectomized animals. Therefore, experiments were designed to compare aggregation, dense granular ATP release, expression of MMPs (MMP-2, MMP-9, and MMP-14) and tissue inhibitors of metalloproteinase (TIMP-1 and TIMP-2) in circulating platelets from sexually mature (7 mo old) gonadally intact and ovariectomized (4 wk) female pigs. Numbers of circulating platelets did not change after ovariectomy, but the percentage of reticulated platelets increased significantly. Platelet aggregation and dense granular ATP secretion also increased significantly with ovariectomy. In platelet lysates, active MMP-2 increased, whereas MMP-14 significantly decreased, after ovariectomy; the expression of TIMP-1, TIMP-2, and P-selectin did not change. These results suggest that platelet turnover, aggregation, and ATP secretion increase with ovariectomy. Also, ovarian hormones selectively regulate the expression and activity of MMPs in porcine platelets. Increased platelet aggregation and activity of MMP-2 would alter platelet-platelet and platelet-vessel wall interactions, contributing to an exaggerated response to injury with loss of ovarian hormones.  相似文献   
60.
Glycodelin A, also known as placental protein-14, is a multifunctional glycosylated protein secreted by the uterine endometrium during the early phases of pregnancy. It is a known suppressor of T cell proliferation, inducer of T cell apoptosis, and inhibitor of sperm zona binding. Unlike in contraceptive activity, where the glycans on the molecule have been shown to play a crucial role, mutagenesis of the asparagines at sites of N-linked glycosylation (Asn(28) and Asn(63)) to glutamine shows that the apoptogenic activity of glycodelin A is executed by the protein backbone. Glycosylation at Asn(28) appears to play a role in the extracellular secretion of the molecule, as mutation of Asn(28) resulted in a significant decrease in the amount of secreted protein, and loss of both glycosylation sites reduced the secretion drastically. Our results also suggest that the loss of glycosylation does not affect the dimerization status of the molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号