首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   7篇
  2023年   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2016年   4篇
  2015年   2篇
  2014年   9篇
  2013年   9篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   5篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有91条查询结果,搜索用时 26 毫秒
81.
82.
83.
Flowers are an important niche for microbes, and microbes in turn influence plant fitness. As flower morphology and biology change rapidly over time, dynamic niches for microbes are formed and lost. Floral physiology at each life stage can therefore influence arrival, persistence and loss of microbial species; however, this remains little understood despite its potential consequences for host reproductive success. Through internal transcribed spacer 1 (ITS1) community profiling, we characterized the effect of transitioning through five floral stages of mānuka (Leptospermum scoparium), from immature bud to spent flower, and subsequent allocation to seed, on the flower-inhabiting fungal community. We found nectar-consuming yeasts from Aureobasidium and Vishniacozyma genera and functionally diverse filamentous fungi from the Cladosporium genus dominated the anthosphere. The candidate core microbiota persisted across this dynamic niche despite high microbial turnover, as observed in shifts in community composition and diversity as flowers matured and senesced. The results demonstrated that floral stages are strong drivers of anthosphere fungal community assembly and dynamics. This study represents the first detailed exploration of fungi through floral development, building on fundamental knowledge in microbial ecology of healthy flowers.  相似文献   
84.
The quadriflagellate genus Chlainomonas frequently dominates red snow globally. It is unusual in several respects, with two separated pairs of flagella, apparent cell division via extrusion of cytoplasmic threads, and being nested phylogenetically within the biflagellate genus Chloromonas. Here, we showed that the austral species Chloromonas (Cr.) rubroleosa, originally described from Antarctic red snow, is a close biflagellate relative of Chlainomonas, challenging the monophyly of Chlainomonas as currently conceived. Sequences of the 18S rRNA gene robustly linked Cr. rubroleosa with near-identical environmental sequences from Antarctic red snow and Chlainomonas from North America, Japan, and Europe. Furthermore, the 18S rRNA and rbcL gene sequences of Cr. rubroleosa were almost identical to New Zealand and North American collections of Chlainomonas. Cr. rubroleosa and New Zealand Chlainomonas are separated by only a single-base substitution across the ITS1-5.8S-ITS2 rRNA loci (and according to ITS2, the North American collection is the next closest relative). This again raises the possibility that Chlainomonas is a life-cycle stage of vegetatively biflagellate organisms, although this remains confounded by the scarcity of biflagellates in field populations, the apparent cell division by quadriflagellates, and the absence of Chlainomonas-type cells in cultures of Cr. rubroleosa. The latter species is broadly similar to Chlainomonas, being poor at swimming, with similar pigment, chloroplast arrangement and ultrastructure, and is relatively large. Increased size is a feature of the wider clade of “Group D” snow algae. A synthesis of field and laboratory investigations may be needed to unravel the life cycle and correct the systematics of this group.  相似文献   
85.
The in vivo modified forms of low-density lipoprotein (LDL) are important for the formation of foam cells and as mediators of the immuno-inflammatory process involved in the progression of atherosclerosis. Electronegative LDL, LDL(-), is a LDL subfraction with pro-inflammatory properties that is present in human blood. To investigate possible atheroprotective effects, an anti-LDL(-) single-chain variable fragment (scFv) was expressed in the methylotrophic yeast Pichia pastoris and its activity was evaluated in vitro against macrophages and in experimental atherosclerosis in Ldlr-/- mice. The recombinant 2C7 scFv was produced in a yield of 9.5 mg of protein/L. The specificity and affinity of purified 2C7 scFv against LDL(-) was confirmed by ELISA. To assess the activity of 2C7 scFv on foam cell formation, RAW 264.7 macrophages were exposed to LDL(-) in the presence or absence of 2C7 scFv. The 2C7 scFv inhibited the uptake of LDL(-) by macrophages in a dose-dependent manner, and internalization of LDL(-) by these cells was found to be mediated by the CD36 and CD14 receptor. In addition, compared with untreated cells, lipid accumulation in macrophages was decreased, and the expression of Cd36, Tlr-4 and Cox-2 was downregulated in macrophages treated with 2C7 scFv. Importantly, compared with untreated mice, the treatment of Ldlr-/- mice with 2C7 scFv decreased the atherosclerotic lesion area at the aortic sinus. In conclusion, our data show that 2C7 scFv inhibits foam cell formation and atherosclerotic plaque development by modulating the expression of genes relevant to atherogenesis. These results encourage further use of this antibody fragment in the development of new therapeutic strategies that neutralize the pro-atherogenic effects of LDL(-).  相似文献   
86.
87.
The level of carbon dioxide (CO2) in the air can affect several traits in plants. Elevated atmospheric CO2 (eCO2) can enhance photosynthesis and increase plant productivity, including biomass, although there are inconsistencies regarding the effects of eCO2 on the plant growth response. The compounding effects of ambient environmental conditions such as light intensity, photoperiod, water availability, and soil nutrient composition can affect the extent to which eCO2 enhances plant productivity. This study aimed to investigate the growth response of Arabidopsis thaliana to eCO2 (800 ppm) under short photoperiod (8/16 h, light/dark cycle). Here, we report an attenuated fertilization effect of eCO2 on the shoot biomass of Arabidopsis plants grown under short photoperiod. The biomass of two-, three-, and four-week-old Arabidopsis plants was increased by 10%, 15%, and 28%, respectively, under eCO2 compared to the ambient CO2 (aCO2, 400 ppm) i.e. control. However, the number of rosette leaves, rosette area, and shoot biomass were similar in mature plants under both CO2 conditions, despite 40% higher photosynthesis in eCO2 exposed plants. The levels of chlorophylls and carotenoids were similar in the fully expanded rosette leaves regardless of the level of CO2. In conclusion, CO2 enrichment moderately increased Arabidopsis shoot biomass at the juvenile stage, whereas the eCO2-induced increment in shoot biomass was not apparent in mature plants. A shorter day-length can limit the source-to-sink resource allocation in a plant in age-dependent manner, hence diminishing the eCO2 fertilization effect on the shoot biomass in Arabidopsis plants grown under short photoperiod.  相似文献   
88.
Cête d׳Ivoire continues to have the highest HIV-1 prevalence rate in West Africa, although the infection number is in constant decline. The external envelope protein of the viruses is a likely site of selection, and responsible for receptor binding and entry into host cells, and therefore constitutes an ideal region with which to investigate the evolutionary processes acting on HIV-1. In this study, we analyse 189 envelope glycoprotein V3 loop region sequences of viruse isolates from 1995 to 2009, from HIV-1 untreated patients living in Cête d׳Ivoire, to decipher the temporal relationship between disease diversity, divergence and selection. Our analyses show that the nonsynonymous and synonymous ratio (dN/dS) was lower than 1 for viral populations analysed within 15 years, which showed the sequences did not undergo adequate immune pressure. The phylogenetic tree of the sequences analysed demonstrated distinctly long internal branches and short external branches, suggesting that only a small number of viruses infected the new host cell at each transmission. In addition to identifying sites under purifying selection, we also identified neutral sites that can cause false positive inference of selection. These sites presented form a resource for future studies of selection pressures acting on HIV-1 enν gene in Cête d׳Ivoire and other West African countries.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号