全文获取类型
收费全文 | 4034篇 |
免费 | 374篇 |
国内免费 | 3篇 |
专业分类
4411篇 |
出版年
2023年 | 30篇 |
2022年 | 60篇 |
2021年 | 131篇 |
2020年 | 79篇 |
2019年 | 92篇 |
2018年 | 115篇 |
2017年 | 106篇 |
2016年 | 170篇 |
2015年 | 309篇 |
2014年 | 275篇 |
2013年 | 270篇 |
2012年 | 444篇 |
2011年 | 359篇 |
2010年 | 230篇 |
2009年 | 186篇 |
2008年 | 267篇 |
2007年 | 240篇 |
2006年 | 196篇 |
2005年 | 189篇 |
2004年 | 132篇 |
2003年 | 129篇 |
2002年 | 107篇 |
2001年 | 17篇 |
2000年 | 17篇 |
1999年 | 12篇 |
1998年 | 27篇 |
1997年 | 9篇 |
1996年 | 8篇 |
1995年 | 12篇 |
1994年 | 10篇 |
1993年 | 12篇 |
1992年 | 16篇 |
1991年 | 13篇 |
1990年 | 9篇 |
1988年 | 12篇 |
1987年 | 5篇 |
1985年 | 5篇 |
1984年 | 13篇 |
1983年 | 7篇 |
1982年 | 6篇 |
1981年 | 9篇 |
1980年 | 4篇 |
1979年 | 8篇 |
1978年 | 4篇 |
1976年 | 4篇 |
1975年 | 8篇 |
1974年 | 4篇 |
1972年 | 4篇 |
1969年 | 4篇 |
1968年 | 4篇 |
排序方式: 共有4411条查询结果,搜索用时 31 毫秒
971.
Gerhard Bringmann Andreas Irmer Doris Feineis Tobias A.M. Gulder Hans-Peter Fiedler 《Phytochemistry》2009,70(15-16):1776-1786
This review deals with polyketides to which nature has developed different biosynthetic pathways in the course of evolution. The anthraquinone chrysophanol is the first example of an acetogenic natural product that is, in an organism-specific manner, formed via more than one polyketide folding mode: In eukaryotes, like e.g., in fungi, in higher plants, and in insects, it is synthesized via folding mode F, while in prokaryotes it originates through mode S. It has, more recently, even been found to be synthesized by a third pathway, named mode S′. Thus, chrysophanol is the first polyketide synthase product that originates through a divergent–convergent biosynthesis (depending on the respective producing organisms). A second example of a striking biosynthetic convergence is the isoquinoline alkaloids. While all as yet investigated representatives of this large family of plant-derived metabolites (more than 2500 known representatives!) are formed from aromatic amino acids, the biosynthetic origin of naphthylisoquinoline alkaloids like dioncophylline A is unprecedented in following a route to isoquinolines in plants: we have shown that such naphthylisoquinolines represent the as yet only known polyketidic di- and tetrahydroisoquinolines, originating from acetate and malonate units, exclusively. Both molecular halves, the isoquinoline part and the naphthalene portion, are even synthesized from a joint polyketide precursor, the first proven case of the F-type folding mode in higher plants. The biosynthetic origins of the natural products presented in this paper were elucidated by feeding 13C2-labeled acetate (or advanced precursors) to the respective producing organisms, with subsequent NMR analysis of their 13C2 incorporation patterns using the potent cryoprobe methodology, thus making the full polyketide folding pattern visible. 相似文献
972.
973.
Huck V Niemeyer A Goerge T Schnaeker EM Ossig R Rogge P Schneider MF Oberleithner H Schneider SW 《Journal of cellular physiology》2007,211(2):399-409
Reperfusion after ischemic conditions induces massive endothelial cell (EC) activation, an initial step of reperfusion injury. Reperfusion is characterized by reoxygenation, realkalinization and a localized increase of inflammatory stimuli. In this study, we focused on the influence of extracellular realkalinization on human umbilical vein endothelial cell (HUVEC) activation. We examined intracellular pH (pH(in)) and intracellular free calcium concentration ([Ca(2+)](in)), a second messenger known to mediate von Willebrand factor (VWF) exocytosis in endothelium, upon realkalinization. Furthermore, we measured the agonist-stimulated exocytosis of VWF, Interleukin-8 and soluble P-selectin (sP-Selectin) as markers of EC activation. To verify a morphological correlate of EC activation, we finally observed platelet-endothelial adherence during realkalinization using shear flow. Realkalinization of HUVEC was simulated by switching from bicarbonate buffered Ringer solution of an acidotic pH(ex) of 6.4 to a physiologic pH(ex) of 7.4. Extracellular realkalinization was accompanied by pH(in) recovery from 6.5 to 7.2 within 10 min. Application of cariporide, an inhibitor of the Na(+)/H(+) exchanger subtype 1 (NHE), during extracellular realkalinization significantly delayed the early kinetics of intracellular realkalinization. Histamine stimulated [Ca(2+)](in) was significantly increased upon realkalinization compared to control cells. Also agonist-stimulated release of VWF, Interleukin-8 and sP-Selectin was massively enhanced during pH(in) recovery in comparison to control. Furthermore, we observed an increased platelet binding to endothelium. Interestingly, each of these realkalinization-induced effects were significantly reduced by early application of cariporide. Therefore, delay of acute NHE-dependent pH(in) recovery may represent a promising mechanism for inhibition of EC activation upon reperfusion. 相似文献
974.
Coding sequence evolution was once thought to be the result of selection on optimal protein function alone. Selection can, however, also act at the RNA level, for example, to facilitate rapid translation or ensure correct splicing. Here, we ask whether the way DNA works also imposes constraints on coding sequence evolution. We identify nucleosome positioning as a likely candidate to set up such a DNA-level selective regime and use high-resolution microarray data in yeast to compare the evolution of coding sequence bound to or free from nucleosomes. Controlling for gene expression and intra-gene location, we find a nucleosome-free "linker" sequence to evolve on average 5-6% slower at synonymous sites. A reduced rate of evolution in linker is especially evident at the 5' end of genes, where the effect extends to non-synonymous substitution rates. This is consistent with regular nucleosome architecture in this region being important in the context of gene expression control. As predicted, codons likely to generate a sequence unfavourable to nucleosome formation are enriched in linker sequence. Amino acid content is likewise skewed as a function of nucleosome occupancy. We conclude that selection operating on DNA to maintain correct positioning of nucleosomes impacts codon choice, amino acid choice, and synonymous and non-synonymous rates of evolution in coding sequence. The results support the exclusion model for nucleosome positioning and provide an alternative interpretation for runs of rare codons. As the intimate association of histones and DNA is a universal characteristic of genic sequence in eukaryotes, selection on coding sequence composition imposed by nucleosome positioning should be phylogenetically widespread. 相似文献
975.
Ayla Schilly Peter Risser Erhard Ebmeyer Lorenz Hartl Jochen C. Reif Tobias Würschum Thomas Miedaner 《Journal of Phytopathology》2011,159(6):411-416
Septoria tritici blotch (STB) is one of the most important leaf diseases in wheat worldwide. Objectives of this study were (i) to compare inoculation and natural infection; (ii) to evaluate the level of adult‐plant resistance to STB using four isolates; and (iii) to analyse environmental stability of 24 winter wheat (Triticum aestivum L.) varieties in inoculated vs. non‐inoculated field trials across 3 years including nine environments (location × year combinations). Field trials were sown in split‐plot design inoculated with four aggressive isolates of S. tritici plus one non‐inoculated variant as main factor and 24 wheat varieties as subfactor. Septoria tritici blotch severity was visually scored as percentage flag leaves covered with lesions bearing pycnidia. Overall STB rating ranged from 8% (Solitär) to 63% (Rubens) flag leaf area affected, resulting in significant (P < 0.01) genotypic variance. Variance of genotype × environment interaction amounted to approximately 50% of the genotypic variance. Genotype × isolate interaction variance was significant too (P < 0.01) but of minor importance. Therefore, environmental stability of varieties should be a major breeding goal. The varieties Solitär, History and Florett were most resistant and stable as revealed by a regression approach, and the susceptible varieties were generally unstable. Hence, STB resistance and stability are correlated (P < 0.01), but there were some exceptions (Tuareg, Ambition). Promising candidates for an environmentally stable, effective adult‐plant resistance have been identified. 相似文献
976.
Chemical synapses are asymmetric cell junctions that mediate communication between neurons. Multidomain scaffolding proteins of the Shank family act as major organizing elements of the "postsynaptic density"--that is, the cytoskeletal protein matrix associated with the postsynaptic membrane. A recent study has shown that the C-terminal sterile alpha-motif or "SAM domain" of Shank3 (also known as ProSAP2) can form two-dimensional sheets of helical fibers. Assembly and packaging of these fibers are markedly enhanced by the presence of Zn2+ ions. Zn2+ can be released together with glutamate from synaptic vesicles and can enter the postsynaptic cell through specific ionotropic receptors. Based on these observations, we propose a new model of synaptic plasticity in which Zn2+ influx directly and instantly modulates the structure and function of the postsynaptic density. 相似文献
977.
Tobias Schmid Johanna S. Blees Magdalena M. Bajer Janine Wild Luca Pescatori Giuliana Cuzzucoli Crucitti Luigi Scipione Roberta Costi Curtis J. Henrich Bernhard Brüne Nancy H. Colburn Roberto Di Santo 《PloS one》2016,11(3)
The translation inhibitor and tumor suppressor Pdcd4 was reported to be lost in various tumors and put forward as prognostic marker in tumorigenesis. Decreased Pdcd4 protein stability due to PI3K-mTOR-p70S6K1 dependent phosphorylation of Pdcd4 followed by β-TrCP1-mediated ubiquitination, and proteasomal destruction of the protein was characterized as a major mechanism contributing to the loss of Pdcd4 expression in tumors. In an attempt to identify stabilizers of Pdcd4, we used a luciferase-based high-throughput compatible cellular assay to monitor phosphorylation-dependent proteasomal degradation of Pdcd4 in response to mitogen stimulation. Following a screen of approximately 2000 compounds, we identified 1,2-bis(4-chlorophenyl)disulfide as a novel Pdcd4 stabilizer. To determine an initial structure-activity relationship, we used 3 additional compounds, synthesized according to previous reports, and 2 commercially available compounds for further testing, in which either the linker between the aryls was modified (compounds 2–4) or the chlorine residues were replaced by groups with different electronic properties (compounds 5 and 6). We observed that those compounds with alterations in the sulfide linker completely lost the Pdcd4 stabilizing potential. In contrast, modifications in the chlorine residues showed only minor effects on the Pdcd4 stabilizing activity. A reporter with a mutated phospho-degron verified the specificity of the compounds for stabilizing the Pdcd4 reporter. Interestingly, the active diaryl disulfides inhibited proliferation and viability at concentrations where they stabilized Pdcd4, suggesting that Pdcd4 stabilization might contribute to the anti-proliferative properties. Finally, computational modelling indicated that the flexibility of the disulfide linker might be necessary to exert the biological functions of the compounds, as the inactive compound appeared to be energetically more restricted. 相似文献
978.
Sandra Lehnert Stephanie Hartmann Sabine Hessler Helmuth Adelsberger Tobias Huth Christian Alzheimer 《Channels (Austin, Tex.)》2016,10(5):365-378
β-site APP-cleaving enzyme 1 (BACE1) has become infamous for its pivotal role in the pathogenesis of Alzheimer's disease (AD). Consequently, BACE1 represents a prime target in drug development. Despite its detrimental involvement in AD, it should be quite obvious that BACE1 is not primarily present in the brain to drive mental decline. In fact, additional functions have been identified. In this review, we focus on the regulation of ion channels, specifically voltage-gated sodium and KCNQ potassium channels, by BACE1. These studies provide evidence for a highly unexpected feature in the functional repertoire of BACE1. Although capable of cleaving accessory channel subunits, BACE1 exerts many of its physiologically significant effects through direct, non-enzymatic interactions with main channel subunits. We discuss how the underlying mechanisms can be conceived and develop scenarios how the regulation of ion conductances by BACE1 might shape electric activity in the intact and diseased brain and heart. 相似文献
979.
980.