首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   57篇
  2016年   7篇
  2015年   11篇
  2014年   19篇
  2013年   20篇
  2012年   30篇
  2011年   24篇
  2010年   11篇
  2009年   8篇
  2008年   18篇
  2007年   16篇
  2006年   16篇
  2005年   11篇
  2004年   17篇
  2003年   11篇
  2002年   9篇
  2001年   16篇
  2000年   11篇
  1999年   7篇
  1998年   11篇
  1995年   7篇
  1994年   7篇
  1993年   6篇
  1992年   6篇
  1991年   9篇
  1990年   14篇
  1989年   11篇
  1988年   12篇
  1987年   19篇
  1986年   17篇
  1985年   13篇
  1984年   12篇
  1983年   7篇
  1982年   6篇
  1981年   11篇
  1980年   9篇
  1979年   20篇
  1978年   17篇
  1977年   13篇
  1976年   12篇
  1975年   7篇
  1974年   7篇
  1973年   12篇
  1972年   13篇
  1971年   8篇
  1970年   6篇
  1969年   9篇
  1968年   8篇
  1967年   7篇
  1966年   6篇
  1964年   7篇
排序方式: 共有630条查询结果,搜索用时 578 毫秒
61.
The biodistribution of two near-infrared fluorescent agents was assessed in vivo by time-resolved diffuse optical imaging. Bacteriochlorophyll a (BC) and cypate-glysine-arginine-aspartic acid-serine-proline-lysine-OH (Cyp-GRD) were administered separately or combined to mice with subcutaneous xenografts of human breast adenocarcinoma and slow-release estradiol pellets for improved tumor growth. The same excitation (780 nm) and emission (830 nm) wavelengths were used to image the distinct fluorescence lifetime distribution of the fluorescent molecular probes in the mouse cancer model. Fluorescence intensity and lifetime maps were reconstructed after raster-scanning whole-body regions of interest by time-correlated single-photon counting. Each captured temporal point-spread function (TPSF) was deconvolved using both a single and a multiexponental decay model to best determine the measured fluorescence lifetimes. The relative signal from each fluorophore was estimated for any region of interest included in the scanned area. Deconvolution of the individual TPSFs from whole-body fluorescence intensity scans provided corresponding lifetime images for comparing individual component biodistribution. In vivo fluorescence lifetimes were determined to be 0.8 ns (Cyp-GRD) and 2 ns (BC). This study demonstrates that the relative biodistribution of individual fluorophores with similar spectral characteristics can be compartmentalized by using the time-domain fluorescence lifetime gating method.  相似文献   
62.

Background

Severe malaria remains a major cause of global morbidity and mortality. Despite the use of potent anti-parasitic agents, the mortality rate in severe malaria remains high. Adjunctive therapies that target the underlying pathophysiology of severe malaria may further reduce morbidity and mortality. Endothelial activation plays a central role in the pathogenesis of severe malaria, of which angiopoietin-2 (Ang-2) has recently been shown to function as a key regulator. Nitric oxide (NO) is a major inhibitor of Ang-2 release from endothelium and has been shown to decrease endothelial inflammation and reduce the adhesion of parasitized erythrocytes. Low-flow inhaled nitric oxide (iNO) gas is a US FDA-approved treatment for hypoxic respiratory failure in neonates.

Methods/Design

This prospective, parallel arm, randomized, placebo-controlled, blinded clinical trial compares adjunctive continuous inhaled nitric oxide at 80 ppm to placebo (both arms receiving standard anti-malarial therapy), among Ugandan children aged 1-10 years of age with severe malaria. The primary endpoint is the longitudinal change in Ang-2, an objective and quantitative biomarker of malaria severity, which will be analysed using a mixed-effects linear model. Secondary endpoints include mortality, recovery time, parasite clearance and neurocognitive sequelae.

Discussion

Noteworthy aspects of this trial design include its efficient sample size supported by a computer simulation study to evaluate statistical power, meticulous attention to complex ethical issues in a cross-cultural setting, and innovative strategies for safety monitoring and blinding to treatment allocation in a resource-constrained setting in sub-Saharan Africa.

Trial Registration

ClinicalTrials.gov Identifier: NCT01255215  相似文献   
63.
64.
Lysobacter lactamgenus produces cephabacins, a class of beta-lactam antibiotics which have an oligopeptide moiety attached to the cephem ring at the C-3 position. The nonribosomal peptide synthetase (NRPS) system, which comprises four distinct modules, is required for the biosynthesis of this short oligopeptide, when one takes the chemical structure of these antibiotics into consideration. The cpbI gene, which has been identified in a region upstream of the pcbAB gene, encodes the NRPS - polyketide synthase hybrid complex, where NRPS is composed of three modules, while the cpbK gene -- which has been reported as being upstream of cpbI-- comprises a single NRPS module. An in silico protein analysis was able to partially reveal the specificity of each module. The four recombinant adenylation (A) domains from each NRPS module were heterologously expressed in Escherichia coli and purified. Biochemical data from ATP-PPi exchange assays indicated that L-arginine was an effective substrate for the A1 domain, while the A2, A3 and A4 domains activated L-alanine. These findings are in an agreement with the known chemical structure of cephabacins, as well as with the anticipated substrate specificity of the NRPS modules in CpbI and CpbK, which are involved in the assembly of the tetrapeptide at the C-3 position.  相似文献   
65.
tmRNA rescues stalled ribosomes in eubacteria by forcing the ribosome to abandon its mRNA template and resume translation with tmRNA itself as a template. Pseudoknot 1 (pk1), immediately upstream of this coding region in tmRNA, is a structural element that is considered essential for tmRNA function based on the analysis of pk1 mutants in vitro. pk1 binds near the ribosomal decoding site and may make base-specific contacts with tmRNA ligands. To study pk1 structure and function in vivo, we have developed a genetic selection that ties the life of Escherichia coli cells to tmRNA activity. Mutation of pk1 at 20% per base and selection for tmRNA activity yielded sequences that retain the same pseudoknot fold. In contrast, selection of active mutants from 10(6) completely random sequences identified hairpin structures that functionally replace pk1. Rational design of a hairpin with increased stability using an unrelated sequence yielded a tmRNA mutant with nearly wild-type activity. We conclude that the role of pk1 in tmRNA function is purely structural and that it can be replaced with a variety of hairpin structures. Our results demonstrate that in the study of functional RNAs, the inactivity of a mutant designed to destroy a given structure should not be interpreted as proof that the structure is necessary for RNA function. Such mutations may only destabilize a global fold that could be formed equally well by an entirely different, stable structure.  相似文献   
66.
Although Acroptilon repens (L.) DC. (Russian knapweed) is known to concentrate zinc (Zn) in upper soil layers, the question of whether the elevated Zn has an allelopathic effect on restoration species has not been addressed. Experiments were conducted to investigate whether soils collected from within infestations of A. repens (high-Zn) inhibit the germination or growth and development of desirable restoration species, compared to soils collected adjacent to an A. repens infestation (low-Zn). Four bioassay species [Sporobolus airoides (Torrey) Torrey (alkali sacaton), Pseudoroegneria spicata (Pursh) A. Love (bluebunch wheatgrass), Psathyrostachys juncea (Fischer) Nevski (Russian wildrye) and A. repens] were germinated in a growth chamber and grown in a greenhouse in both soils and received treatments for the alleviation of Zn toxicity (P, Fe, Fe-oxide, and soil mixing) to isolate the effects of elevated soil Zn on plant performance. Percent germination, total plant biomass, tiller and stem number, inflorescence number, and tissue metal levels were compared among soil types and treatments for each species. There was no evidence from any of the indicators measured that high-Zn soils reduced plant performance, compared to low-Zn soils. Tissue Zn levels barely approached the lower range of phytotoxic levels established for native grasses. Older plants with longer exposure times may accumulate higher Zn concentrations. S. airoides and A. repens both had higher biomass in the high-Zn soil, most likely due to increased macronutrient (N and P) availability. As the Zn levels in the soils used in this study were much higher than any levels previously reported in soils associated with A. repens, it is unlikely that the elevation of soil Zn by A. repens will hinder germination or growth and development of desirable grasses during establishment.  相似文献   
67.

Background  

We recently described a mini-intein in the PRP8 gene of a strain of the basidiomycete Cryptococcus neoformans, an important fungal pathogen of humans. This was the second described intein in the nuclear genome of any eukaryote; the first nuclear encoded intein was found in the VMA gene of several saccharomycete yeasts. The evolution of eukaryote inteins is not well understood. In this report we describe additional PRP8 inteins (bringing the total of these to over 20). We compare and contrast the phylogenetic distribution and evolutionary history of the PRP8 intein and the saccharomycete VMA intein, in order to derive a broader understanding of eukaryote intein evolution. It has been suggested that eukaryote inteins undergo horizontal transfer and the present analysis explores this proposal.  相似文献   
68.
69.
Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of nonalcoholic steatohepatitis. The ER stress response is activated in the livers of mice fed a methionine- and choline-deficient (MCD) diet, yet the role of ER stress in the pathogenesis of MCD diet-induced steatohepatitis is unknown. Using chemical chaperones on hepatic steatosis and markers of inflammation and fibrosis in mice fed a MCD diet, we aim to determine the effects of reducing ER stress. C57BL/6J mice were fed a MCD diet with or without the ER chemical chaperones 4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) for 2 wk. TUDCA and PBA effectively attenuated the ER stress response in MCD diet-fed mice, as evidenced by reduced protein levels of phosphorylated eukaryotic initiation factor 2α and phosphorylated JNK and suppression of mRNA levels of CCAAT/enhancer binding protein homologous protein, glucose-regulated protein 78 kDa, and X-box binding protein 1. However, PBA and TUDCA did not decrease MCD diet-induced hepatic steatosis. MCD diet-induced hepatic inflammation, as evidenced by increased plasma alanine aminotransferase and induction of hepatic TNFα expression, was also not reduced by PBA or TUDCA. PBA and TUDCA did not attenuate MCD diet-induced upregulation of the fibrosis-associated genes tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9. ER chemical chaperones reduce MCD diet-induced ER stress, yet they do not improve MCD diet-induced hepatic steatosis, inflammation, or activation of genes associated with fibrosis. These data suggest that although the ER stress response is activated by the MCD diet, it does not have a primary role in the pathogenesis of MCD diet-induced steatohepatitis.  相似文献   
70.
There is increasing evidence that hyperoxia, particularly at the time of birth, may result in neurological injury, in particular to the susceptible vasculature of these tissues. This study was aimed at determining whether overexpression of extracellular superoxide dismutase (EC-SOD) is protective against brain injury induced by hyperoxia. Transgenic (TG) mice (with an extra copy of the human extracellular superoxide dismutase gene) and wild-type (WT) neonate mice were exposed to hyperoxia (95% of F(i) o(2) ) for 7 days after birth versus the control group in room air. Brain positron emission tomography (PET) scanning with fludeoxyglucose (FDG) isotope uptake was performed after exposure. To assess apoptosis induced by hyperoxia exposure, caspase 3 ELISA and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were performed. Quantitative western blot for the following inflammatory markers was performed: glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, macrophage-inhibiting factor, and phospho-AMP-activated protein kinase. PET scanning with FDG isotope uptake showed significantly higher uptake in the WT hyperoxia neonate brain group (0.14 ± 0.03) than in both the TG group (0.09 ± 0.01) and the control group (0.08 ± 0.02) (P< 0.05). Histopathological investigation showed more apoptosis and dead neurons in hippocampus and cerebellum brain sections of WT neonate mice after exposure to hyperoxia than in TG mice; this finding was also confirmed by TUNEL staining. The caspase 3 assay confirmed the finding of more apoptosis in WT hyperoxia neonates (0.814 ± 0.112) than in the TG hyperoxic group (0.579 ± 0.144) (P < 0.05); this finding was also confirmed by TUNEL staining. Quantitative western blotting for the inflammatory and metabolic markers showed significantly higher expression in the WT group than in the TG and control groups. Thus, overexpression of EC-SOD in the neonate brain offers significant protection against hyperoxia-induced brain damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号