首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1226篇
  免费   59篇
  1285篇
  2023年   17篇
  2022年   23篇
  2021年   36篇
  2020年   20篇
  2019年   27篇
  2018年   35篇
  2017年   31篇
  2016年   47篇
  2015年   59篇
  2014年   59篇
  2013年   99篇
  2012年   94篇
  2011年   93篇
  2010年   53篇
  2009年   37篇
  2008年   61篇
  2007年   63篇
  2006年   43篇
  2005年   45篇
  2004年   43篇
  2003年   35篇
  2002年   30篇
  2001年   21篇
  2000年   16篇
  1999年   20篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   6篇
  1993年   6篇
  1992年   17篇
  1991年   12篇
  1990年   12篇
  1989年   17篇
  1988年   6篇
  1987年   10篇
  1986年   5篇
  1985年   11篇
  1984年   6篇
  1982年   3篇
  1981年   7篇
  1979年   7篇
  1978年   3篇
  1977年   6篇
  1975年   5篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1966年   3篇
排序方式: 共有1285条查询结果,搜索用时 15 毫秒
51.
As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an “immune exhaustion”, with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28CD57+CD8+ T cells between the groups. However, the frequency of Tim-3+CD8+ and Tim-3+CD4+ exhausted T cells, but not PD-1+ T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1+CD8+ T cells were directly associated with T cell immune activation in children. The frequency of Tim-3+CD8+ T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.  相似文献   
52.
53.
A series of novel 1-benzyl-2-butyl-4-chloroimidazole embodied 4-azafluorenone hybrids, designed via molecular hybridization approach, were synthesized in very good yields using one pot condensation of 1-benzyl-2-butyl-4-chloroimidazole-5-carboxaldehyde, 1,3-indanedione, aryl/heteroaryl methyl ketones and ammonium acetate. All the synthetic derivatives were fully characterized by spectral data and evaluated for antimicrobial activity by disc diffusion method against selected bacteria and fungal strains. Among the 15 new compounds screened, 4-(1-benzyl-2-butyl-4-chloro-1H-imidazol-5-yl)-2-(furan-2-yl)-5H-indeno[1,2-b]pyridin-5-one(10k) has pronounced activity with higher zone of inhibition (ZoI) against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Aspergillus flavus and Candida albicans. Also 4-(1-benzyl-2-butyl-4-chloro-1H-imidazol-5-yl)-2-(dibenzo[b,d]thiophen-2-yl)-5H-indeno [1,2-b]pyridin-5-one (10n) and 4-(1-benzyl-2-butyl-4-chloro-1H-imidazol-5-yl)-2-(3-tosyl-3H-inden-1-yl)-5H-indeno[1,2-b]pyridin-5-one (10o) showed selective higher inhibitory activity against Aspergillus flavus and Candida albicans. The results demonstrated potential importance of molecular hybridization in the development of 10k as potential antimicrobial agent.  相似文献   
54.

Background

Newer strategies for augmenting immune responses of pharmacologically active glucans may serve to improve the medicinal potential of these biomolecules. With this aim, the present work was focused on generating targeted high molecular size glucan particles with magnified immune response activity.

Methods

Heteroglucans were conjugated with PAMAM dendrimers using a Schiff base reductive amination reaction to generate a polytethered molecule with multiple glucan motifs. The modulated construct was characterized by FTIR, TEM, 1H NMR and dynamic light scattering (DLS) methods. Effects of conjugated glucans were examined in RAW 264.7 macrophage cells as well as in S-180 murine tumor models.

Results

Dendrimer-conjugated glucans were found to exhibit a two-fold increase in immune stimulation in comparison to unconjugated glucans. This may be corroborated by the predominant enhancement in immunological functions such as nitric oxide production, ROS generation and immune directed tumor inhibition in murine models. Immune cell surface markers (CD4, CD8, CD19, MHC-II) and cytokine levels were also found to be highly up-regulated in the splenocytes of mice subjected to particulate glucan administration. Our study also demonstrated that conjugated glucan treatment to RAW 264.7 cells strongly enhanced the phosphorylation of two downstream signalling molecules of the mitogen activated protein kinase (MAPKs) family: p38 and MEK1/2 relative to single glucans thereby relating molecular mechanisms with enhanced immune stimulation.

Conclusions and general significance

The results obtained thus support that particulate format of soluble heteroglucan will thereby improve its functionality and identify leads in therapeutic competence.  相似文献   
55.
Changes in the number, size, and shape of dendritic spines are associated with synaptic plasticity, which underlies cognitive functions such as learning and memory. This plasticity is attributed to reorganization of actin, but the molecular signals that regulate this process are poorly understood. In this study, we show neural Wiskott-Aldrich syndrome protein (N-WASP) regulates the formation of dendritic spines and synapses in hippocampal neurons. N-WASP localized to spines and active, functional synapses as shown by loading with FM4-64 dye. Knock down of endogenous N-WASP expression by RNA interference or inhibition of its activity by treatment with a specific inhibitor, wiskostatin, caused a significant decrease in the number of spines and excitatory synapses. Deletion of the C-terminal VCA region of N-WASP, which binds and activates the actin-related protein 2/3 (Arp2/3) complex, dramatically decreased the number of spines and synapses, suggesting activation of the Arp2/3 complex is critical for spine and synapse formation. Consistent with this, Arp3, like N-WASP, was enriched in spines and excitatory synapses and knock down of Arp3 expression impaired spine and synapse formation. A similar defect in spine and synapse formation was observed when expression of an N-WASP activator, Cdc42, was knocked down. Thus, activation of N-WASP and, subsequently, the Arp2/3 complex appears to be an important molecular signal for regulating spines and synapses. Arp2/3-mediated branching of actin could be a mechanism by which dendritic spine heads enlarge and subsequently mature. Collectively, our results point to a critical role for N-WASP and the Arp2/3 complex in spine and synapse formation.  相似文献   
56.
PEGylation induced changes in molecular volume and solution properties of HbA have been implicated as potential modulators of its vasoconstrictive activity. However, our recent studies with PEGylated Hbs carrying two PEG chains/Hb, have demonstrated that the modulation of the vasoconstrictive activity of Hb is not a direct correlate of the molecular volume and solution properties of the PEGylated Hb and implicated a role for the surface charge and/or the pattern of surface decoration of Hb with PEG. HbA has now been modified by thiolation mediated maleimide chemistry based PEGylation that does not alter its surface charge and conjugates multiple copies of PEG5K chains. This protocol has been optimized to generate a PEGylated Hb, (SP-PEG5K)6-Hb, that carries ~six PEG5K chains/Hb – HexaPEGylated Hb. PEGylation increased the O2 affinity of Hb and desensitized the molecule for the influence of ionic strength, pH, and allosteric effectors, presumably a consequence of the hydrated PEG-shell generated around the protein. The total PEG mass in (SP-PEG5K)6-Hb, its molecular volume, O2 affinity and solution properties are similar to that of another PEGylated Hb, (SP-PEG20K)2-Hb, that carries two PEG20K chains/Hb. However, (SP-PEG5K)6-Hb exhibited significantly reduced vasoconstriction mediated response than (SP-PEG20K)2-Hb. These results demonstrate that the enhanced molecular size and solution properties achieved through the conjugation of multiple copies of small PEG chains to Hb is more effective in decreasing its vasoconstrictive activity than that achieved through the conjugation of a comparable PEG mass using a small number of large PEG chains.  相似文献   
57.
The biosynthetic gene cluster for tobramycin, a 2-deoxystreptamine-containing aminoglycoside antibiotic, was isolated from Streptomyces tenebrarius ATCC 17920. A genomic library of S. tenebrarius was constructed, and a cosmid, pST51, was isolated by the probes based on the core regions of 2-deoxy-scyllo-inosose (DOI) synthase, and L-glutamine:DOI aminotransferase and L-glutamine:scyllo-inosose aminotransferase. Sequencing of 33.9 kb revealed 24 open reading frames (ORFs) including putative tobramycin biosynthetic genes. We demonstrated that one of these ORFs, tbmA, encodes DOI synthase by in vitro enzyme assay of the purified protein. The catalytic residues of TbmA and dehydroquinate synthase were studied by homology modeling. The gene cluster found is likely to be involved in the biosynthesis of tobramycin.  相似文献   
58.
Various physiological stimuli trigger the conversion of noninfective Leishmania donovani promastigotes to the infective form. Here, we present the first evidence of the effect of glucose starvation, on virulence and survival of these parasites. Glucose starvation resulted in a decrease in metabolically active parasites and their proliferation. However, this was reversed by supplementation of gluconeogenic amino acids. Glucose starvation induced metacyclogenesis and enhanced virulence through protein kinase A regulatory subunit (LdPKAR1) mediated autophagy. Glucose starvation driven oxidative stress upregulated the antioxidant machinery, culminating in increased infectivity and greater parasitic load in primary macrophages. Interestingly, phosphoenolpyruvate carboxykinase (LdPEPCK), a gluconeogenic enzyme, exhibited the highest activity under glucose starvation to regulate growth of L. donovani by alternatively utilising amino acids. Deletion of LdPEPCK (Δpepck) decreased virulent traits and parasitic load in primary macrophages but increased autophagosome formation in the mutant parasites. Furthermore, Δpepck parasites failed to activate the Pentose Phosphate Pathway shunt, abrogating NADPH/NADP+ homoeostasis, conferring increased susceptibility towards oxidants following glucose starvation. In conclusion, this study showed that L. donovani undertakes metabolic rearrangements via gluconeogenesis under glucose starvation for acquiring virulence and its survival in the hostile environment.  相似文献   
59.
A series of (5S) N-(3-{3-fluoro-4-[4-(3-aryl-4,5-dihydro-isoxazole-5-carbonyl)-piperazin-1-yl]-phenyl}-2-oxo-oxazolidin-5-ylmethyl)-acetamide(6a–o) were synthesized and their in vitro antibacterial activity against various resistant Gram-positive and Gram-negative bacteria were evaluated. Most of the synthesized compounds showed 2 to 10 fold lower MIC values compared to linezolid against Staphylococcus aureus ATCC 25923, ATCC 70069, ATCC 29213, Bacillus cereus MTCC 430, Enterococcus faecalis MTCC439, Klebsiella pneumoniae ATCC 27736, and Streptococcus pyogens.  相似文献   
60.
The ratio of gelatin to sodium carboxymethyl cellulose (SCMC) at which maximum yield was obtained was optimized. This optimized ratio of gelatin to SCMC along with other parameters was used to prepare microparticles of different sizes. Vegetable oil was used as emulsion medium. Effect of various factors like amount of surfactant, concentration of polymer on the formation, and size of the microparticles was investigated. These microparticles were used as carrier for isoniazid. Among different cross-linkers, glutaraldehyde was found to be the most effective cross-linker at the temperature and pH at which the reaction was carried out. The loading efficiency and release behavior of loaded microparticles were found to be dependent on the amount of cross-linker used, concentration of drug, and time of immersion. Maximum drug loading efficiency was observed at higher immersion time. The release rate of isoniazid was more at higher pH compared to that of at lower pH. The sizes of the microparticles were investigated by scanning electron microscope. In all the cases, the microparticles formed were found spherical in shape except to those at low stirring speed where they were agglomerated. Fourier transform infrared study indicated the successful incorporation of isoniazid into the microparticles. Differential scanning calorimetry study showed a molecular level dispersion of isoniazid in the microparticles. X-ray diffraction study revealed the development of some crystallinity due to the encapsulation of isoniazid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号