首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1925篇
  免费   121篇
  2023年   21篇
  2022年   35篇
  2021年   56篇
  2020年   36篇
  2019年   38篇
  2018年   40篇
  2017年   54篇
  2016年   62篇
  2015年   78篇
  2014年   95篇
  2013年   122篇
  2012年   135篇
  2011年   133篇
  2010年   75篇
  2009年   68篇
  2008年   96篇
  2007年   85篇
  2006年   71篇
  2005年   63篇
  2004年   78篇
  2003年   52篇
  2002年   38篇
  2001年   38篇
  2000年   43篇
  1999年   47篇
  1998年   16篇
  1996年   12篇
  1995年   15篇
  1994年   11篇
  1993年   13篇
  1992年   23篇
  1991年   25篇
  1990年   17篇
  1989年   23篇
  1988年   17篇
  1987年   20篇
  1986年   10篇
  1985年   13篇
  1984年   13篇
  1983年   11篇
  1982年   10篇
  1981年   11篇
  1979年   17篇
  1978年   6篇
  1977年   11篇
  1976年   8篇
  1975年   15篇
  1974年   14篇
  1972年   6篇
  1970年   9篇
排序方式: 共有2046条查询结果,搜索用时 15 毫秒
961.
Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression.  相似文献   
962.
Influenza surveillance was carried out in a subset of patients with influenza-like illness (ILI) presenting at an Employee Health Clinic (EHS) at All India Institute of Medical Sciences (AIIMS), New Delhi (urban) and pediatric out patients department of civil hospital at Ballabhgarh (peri-urban), under the Comprehensive Rural Health Services Project (CRHSP) of AIIMS, in Delhi region from January 2007 to December 2010. Of the 3264 samples tested, 541 (17%) were positive for influenza viruses, of which 221 (41%) were pandemic Influenza A(H1N1)pdm09, 168 (31%) were seasonal influenza A, and 152 (28%) were influenza B. While the Influenza viruses were detected year-round, their types/subtypes varied remarkably. While there was an equal distribution of seasonal A(H1N1) and influenza B in 2007, predominance of influenza B was observed in 2008. At the beginning of 2009, circulation of influenza A(H3N2) viruses was observed, followed later by emergence of Influenza A(H1N1)pdm09 with co-circulation of influenza B viruses. Influenza B was dominant subtype in early 2010, with second wave of Influenza A(H1N1)pdm09 in August-September, 2010. With the exception of pandemic H1N1 emergence in 2009, the peaks of influenza activity coincided primarily with monsoon season, followed by minor peak in winter at both urban and rural sites. Age group analysis of influenza positivity revealed that the percent positivity of Influenza A(H1N1)pdm09 influenza virus was highest in >5–18 years age groups (OR 2.5; CI = 1.2–5.0; p = 0.009) when compared to seasonal influenza. Phylogenetic analysis of Influenza A(H1N1)pdm09 from urban and rural sites did not reveal any major divergence from other Indian strains or viruses circulating worldwide. Continued surveillance globally will help define regional differences in influenza seasonality, as well as, to determine optimal periods to implement influenza vaccination programs among priority populations.  相似文献   
963.
A metagenomic library of 2.1 × 106 clones was constructed using oil-contaminated soil from Gujarat (India). One of the fosmid clones, 40N22, encodes a polyhydroxyalkanoate synthase showing 76% identity with an Alcaligenes sp. synthase. The corresponding gene was expressed in Pseudomonas putida KT2440 ΔphaC1 which is impaired in PHA production. The gene conferred the recombinant strain PpKT-40N22 with the ability to produce copolymers with up to 21% in medium-chain-length content. Thus, 37% and 45% of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate), respectively were obtained when using sodium heptanoate and oleic acid as carbon sources. These 3-hydroxybutyrate-(3HB)-based polymers are of interest since they incorporate the properties of medium chain length polymers and thus increase the range of applications of PHAs.  相似文献   
964.
Agents that activate cannabinoid receptor pathways have been tested as treatments for cachexia, nausea or neuropathic pain in HIV-1/AIDS patients. The cannabinoid receptors (CB(1)R and CB(2)R) and the HIV-1 co-receptors, CCR5 and CXCR4, all signal via Gαi-coupled pathways. We hypothesized that drugs targeting cannabinoid receptors modulate chemokine co-receptor function and regulate HIV-1 infectivity. We found that agonism of CB(2)R, but not CB(1)R, reduced infection in primary CD4+ T cells following cell-free and cell-to-cell transmission of CXCR4-tropic virus. As this change in viral permissiveness was most pronounced in unstimulated T cells, we investigated the effect of CB(2)R agonism on to CXCR4-induced signaling following binding of chemokine or virus to the co-receptor. We found that CB(2)R agonism decreased CXCR4-activation mediated G-protein activity and MAPK phosphorylation. Furthermore, CB(2)R agonism altered the cytoskeletal architecture of resting CD4+ T cells by decreasing F-actin levels. Our findings suggest that CB(2)R activation in CD4+ T cells can inhibit actin reorganization and impair productive infection following cell-free or cell-associated viral acquisition of CXCR4-tropic HIV-1 in resting cells. Therefore, the clinical use of CB(2)R agonists in the treatment of AIDS symptoms may also exert beneficial adjunctive antiviral effects against CXCR4-tropic viruses in late stages of HIV-1 infection.  相似文献   
965.
Lal A  Hales S  French N  Baker MG 《PloS one》2012,7(4):e31883

Background

Although seasonality is a defining characteristic of many infectious diseases, few studies have described and compared seasonal patterns across diseases globally, impeding our understanding of putative mechanisms. Here, we review seasonal patterns across five enteric zoonotic diseases: campylobacteriosis, salmonellosis, vero-cytotoxigenic Escherichia coli (VTEC), cryptosporidiosis and giardiasis in the context of two primary drivers of seasonality: (i) environmental effects on pathogen occurrence and pathogen-host associations and (ii) population characteristics/behaviour.

Methodology/Principal Findings

We systematically reviewed published literature from 1960–2010, resulting in the review of 86 studies across the five diseases. The Gini coefficient compared temporal variations in incidence across diseases and the monthly seasonality index characterised timing of seasonal peaks. Consistent seasonal patterns across transnational boundaries, albeit with regional variations was observed. The bacterial diseases all had a distinct summer peak, with identical Gini values for campylobacteriosis and salmonellosis (0.22) and a higher index for VTEC (Gini = 0.36). Cryptosporidiosis displayed a bi-modal peak with spring and summer highs and the most marked temporal variation (Gini = 0.39). Giardiasis showed a relatively small summer increase and was the least variable (Gini = 0.18).

Conclusions/Significance

Seasonal variation in enteric zoonotic diseases is ubiquitous, with regional variations highlighting complex environment-pathogen-host interactions. Results suggest that proximal environmental influences and host population dynamics, together with distal, longer-term climatic variability could have important direct and indirect consequences for future enteric disease risk. Additional understanding of the concerted influence of these factors on disease patterns may improve assessment and prediction of enteric disease burden in temperate, developed countries.  相似文献   
966.
This article documents the addition of 96 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Clarias batrachus, Marmota himalayana, Schizothorax richardsonii, Sitophilus zeamais and Syagrus romanzoffiana. These loci were cross‐tested on the following species: Clarias dussumeri, Clarias gariepinus, Heteropneustus fossilis, Sitophilus granarius and Sitophilus oryzae.  相似文献   
967.
We examine the synchrony in the dynamics of localized [Ca2 + ]i oscillations among a group of cells exhibiting such complex Ca2 +  oscillations, connected in the form of long chain, via diffusing coupling where cytosolic Ca2 +  and inositol 1,4,5-triphosphate are coupling molecules. Based on our numerical results, we could able to identify three regimes, namely desynchronized, transition and synchronized regimes in the (T − ke) (time period-coupling constant) and (A − ke) (amplitude-coupling constant) spaces which are supported by phase plots (Δϕ verses time) and recurrence plots, respectively. We further show the increase of synchronization among the cells as the number of coupling molecules increases in the (T − ke) and (A − ke) spaces.  相似文献   
968.

Background

The optimal duration of preventive therapy for tuberculosis (TB) among HIV-infected persons in TB-endemic countries is unknown.

Methods

An open-label randomized clinical trial was performed and analyzed for equivalence. Seven hundred and twelve HIV-infected, ART-naïve patients without active TB were randomized to receive either ethambutol 800 mg and isoniazid 300 mg daily for six-months (6EH) or isoniazid 300 mg daily for 36-months (36H). Drugs were dispensed fortnightly and adherence checked by home visits. Patients had chest radiograph, sputum smear and culture performed every six months, in addition to investigations if they developed symptoms. The primary endpoint was incident TB while secondary endpoints were all-cause mortality and adverse events. Survival analysis was performed on the modified intent to treat population (m-ITT) and rates compared.

Findings

Tuberculosis developed in 22 (6.4%) of 344 subjects in the 6EH arm and 13 (3.8%) of 339 subjects in the 36H arm with incidence rates of 2.4/100py (95%CI- 1.4–3.5) and 1.6/100py (95% CI-0.8–3.0) with an adjusted rate ratio (aIRR) of 1.6 (0.8–3.2). Among TST-positive subjects, the aIRR of 6EH was 1.7 (0.6–4.3) compared to 36H, p = 0.8. All-cause mortality and toxicity were similar in the two arms. Among 15 patients with confirmed TB, 4 isolates were resistant to isoniazid and 2 were multidrug-resistant.

Interpretation

Both regimens were similarly effective in preventing TB, when compared to historical incidence rates. However, there was a trend to lower TB incidence with 36H. There was no increase in isoniazid resistance compared to the expected rate in HIV-infected patients.The trial is registered at ClinicalTrials.gov, NCT00351702.  相似文献   
969.
970.
Soil-related Constraints to the Carbon Dioxide Fertilization Effect   总被引:1,自引:0,他引:1  
The significance of CO2 fertilization in increasing net primary production (NPP) and of the underpinning mechanisms is widely recognized. This article focuses on soil resources, particularly availability of plant nutrients (e.g., nitrogen, phosphorus) and water affecting the NPP under enhanced levels of atmospheric CO2. The review of the literature indicates the critical role of N in enhancing NPP at higher than ambient CO2 concentration. Elevated CO2 increases the total N uptake by 3–33% and induces a negative feedback in soil N dynamics. Decrease in tissue N concentration by 10–33%, and increase in the recalcitrant C- fractions in plant biomass results in progressive decline in soil N availability over time and necessitates supplemental application of N. In addition, higher quantity of soil available P is required. Despite a reduction in stomatal conductance and transpiration by about 20–27% at leaf level, these benefits are offset at the ecosystem level by higher water losses through soil evaporation, runoff and a rise in leaf temperature due to physiological forcing. A three-way interaction between atmospheric CO2, soil nutrients and water availability may be the decisive factor to harnessing the benefits of CO2 fertilization effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号