首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   47篇
  1046篇
  2023年   14篇
  2022年   21篇
  2021年   32篇
  2020年   17篇
  2019年   25篇
  2018年   28篇
  2017年   27篇
  2016年   33篇
  2015年   51篇
  2014年   46篇
  2013年   71篇
  2012年   74篇
  2011年   74篇
  2010年   42篇
  2009年   33篇
  2008年   49篇
  2007年   43篇
  2006年   36篇
  2005年   35篇
  2004年   30篇
  2003年   24篇
  2002年   18篇
  2001年   20篇
  2000年   15篇
  1999年   17篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   6篇
  1993年   6篇
  1992年   16篇
  1991年   13篇
  1990年   12篇
  1989年   16篇
  1988年   6篇
  1987年   10篇
  1986年   4篇
  1985年   10篇
  1984年   6篇
  1982年   3篇
  1981年   5篇
  1979年   7篇
  1978年   3篇
  1977年   6篇
  1975年   5篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1966年   3篇
排序方式: 共有1046条查询结果,搜索用时 15 毫秒
81.
In vitro assays have demonstrated that peptides derived from the recently-identified proSAAS precursor inhibit prohormone convertase 1 (PC1) suggesting that this novel peptide may function as an endogenous inhibitor of PC1. To further understand the role of proSAAS in vivo, we have investigated the expression of proSAAS mRNA and processing of proSAAS during pre- and early postnatal rodent development. In situ hybridization showed that, by embryonic day 12.5 (e12.5) in the rat, proSAAS mRNA was present in essentially all differentiating neurons in the mantle layer of the myelencephalon, metencephalon, diencephalon, spinal cord and several sympathetic ganglia. During later stages of prenatal development, widespread proSAAS expression continues in post-mitotic neurons of both the CNS and PNS and begins in endocrine cells of the anterior and intermediate pituitary. Although proSAAS expression overlaps with PC1 in several regions, its overall expression pattern is significantly more extensive, suggesting that proSAAS may be multifunctional during development. Processed forms of proSAAS are present by at least mid-gestation with marked accumulation of two C-terminal forms, comprising the PC1 inhibitory fragment of proSAAS.  相似文献   
82.
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding of the bovine hippocampal 5-HT(1A) receptor by cholesterol complexation in native membranes using digitonin. Complexation of cholesterol from bovine hippocampal membranes using digitonin results in a concentration-dependent reduction in specific binding of the agonist 8-OH-DPAT and antagonist p-MPPF to 5-HT(1A) receptors. The corresponding changes in membrane order were monitored by analysis of fluorescence polarization data of the membrane depth-specific probes, DPH and TMA-DPH. Taken together, our results point out the important role of membrane cholesterol in maintaining the function of the 5-HT(1A) receptor. An important aspect of these results is that non-availability of free cholesterol in the membrane due to complexation with digitonin rather than physical depletion is sufficient to significantly reduce the 5-HT(1A) receptor function. These results provide a comprehensive understanding of the effects of the sterol-complexing agent digitonin in particular, and the role of membrane cholesterol in general, on the 5-HT(1A) receptor function.  相似文献   
83.
84.
Here, we report a simple, green and economic process for the synthesis of highly fluorescent carbon nanoparticles (CPs) through low‐temperature carbonization of a fruit waste, Citrus sinensis peel. This approach allows the large‐scale production of aqueous CPs dispersions without any additives and post‐treatment processes. The as‐prepared CPs were of small particle size, exhibited bright blue fluorescence under UV irradiation (λmax = 365 nm) with excellent colloidal stability in water. The chemical composition, structure and morphology of the as‐prepared CPs were analyzed using various spectroscopic techniques such as X‐ray diffraction, transmission electron microscopy and raman spectroscopy. The formed CPs were turbostratic in nature, with a large number of functional groups on the surface. We explored the adsorption characteristics of the formed CPs for wastewater treatment. Because of the negative surface of the CPs, as evident from the zeta value, it is possible to use them for selective adsorption of the cationic dye methylene blue from a mixture of dyes. The equilibrium adsorption isotherm revealed that the Langmuir model better describes the adsorption process than the Freundlich model. As‐prepared CPs rapidly adsorbed ~84% of the methylene blue within 1 min and can be regenerated and used repeatedly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
85.
The world’s increasing population and shortage of food and feed is creating an urgently for us to look for new protein sources from waste products like keratinous waste. Poor management of these wastes has made them one of the major recalcitrant pollutants in nature. Microbial keratinases offers an economic and eco-friendly alternative for degrading and recycling keratinous waste into valuable byproducts. Diverse groups of microorganisms viz., bacteria, fungi and actinomycetes have the ability to degrade recalcitrant keratin by producing keratinase enzyme. Microbial keratinases exhibits great diversity in its biochemical properties with respect to activity and stability in various pH and temperature ranges as well as in the range of recalcitrant proteins it degrades like those present in feathers, hairs, nails, hooves etc. Owing to diverse properties and multifarious biotechnological implications, keratinases can be considered as promising biocatalysts for preparation of animal nutrients, protein supplements, leather processing, fiber modification, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical, cosmetic and biomedical industries, and waste management. This review article presents an overview of keratin structure and composition, mechanism of microbial keratinolysis, diversity of keratinolytic microorganisms, and their potential applications in various fields.  相似文献   
86.
Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L.  相似文献   
87.
Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 --dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His138, His579 and Arg587 in catalysis and/or substrate-binding by the E. coli enzyme, Ser8 in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during photoactivation of PEPC-PK and PEPC in leaves, extensive use of site-directed mutagenesis to precisely identify other key amino acid residues, changes in quarternary structure of PEPC in vivo, a high-resolution crystal structure, and hormonal regulation of PEPC expression.Abbreviations OAA oxalacetate - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC-protein kinase - PPDK pyruvate, orthophosphate dikinase - Rubisco ribulose 1,5-bis-phosphate carboxylase/oxygenase - CAM Crassulacean acid metabolism  相似文献   
88.
Effect of doxorubicin on heart mitochondrial enzymes was studied in rats with or without the administration of alpha-tocopherol. Rats were treated with doxorubicin 2.5 mg/kg, ip body wt once a week for 8 weeks. Alpha-tocopherol was co-administered orally for 2 months (400 mg/kg body wt daily). TCA cycle enzyme, NADH-dehydrogenase, cytochrome-C-oxidase and Na+,K(+)-ATPase activities were found to be decreased in doxorubicin treatment. A significant decrease in protease activity was observed with a concomitant increase in mitochondrial protein level. Mitochondrial lipid peroxide level was found to be increased with a decrease in thiol content. Alpha-tocopherol co-administration was found to maintain the mitochondrial enzyme activities as well as the thiol content. The results are discussed with reference to the antioxidant nature of alpha-tocopherol.  相似文献   
89.
Abstract

A series of N-[1-benzyl-2-oxo-2-substituted(ethyl)] benzene/p-toluene sulfonamide (K1–K12) are synthesized. Structure of the synthesized analogues has been confirmed by FT-IR, 1H & 13C NMR and ESI-MS spectroscopic techniques. All the synthesized analogues (K1–K12) have also been examined for their in-vitro antibacterial and antifungal activities. Compounds showed good antibacterial and antifungal activity against standard drug. Anticancer study has been carried out on three cancer cell lines PC-3, MCF-7 and A549 on two different concentrations (mg/mL and μg/mL). The K4 sulfonamide analogue showed better anticancer activity amongst all analogues against PC-3 and A549 cell lines. K4 inhibit G0/G1 phase in cell-cycle analysis experiment. All synthesized molecules (K1–K12) dock at junction p53-DNA and make hydrogen bonded with residues of p53 protein as per docking study. ADMET predictions of synthesized phenylalanine sulfonamide analogues (K1–K12) has been done using ‘Lipinski rule’ and it has been observed that all synthesized analogues did not violate the rule. Electronic, chemical properties and mulliken atomic charges of analogues were calculated using density functional theory (DFT).

Communicated by Ramaswamy H. Sarma  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号