首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   47篇
  1046篇
  2023年   14篇
  2022年   21篇
  2021年   32篇
  2020年   17篇
  2019年   25篇
  2018年   28篇
  2017年   27篇
  2016年   33篇
  2015年   51篇
  2014年   46篇
  2013年   71篇
  2012年   74篇
  2011年   74篇
  2010年   42篇
  2009年   33篇
  2008年   49篇
  2007年   43篇
  2006年   36篇
  2005年   35篇
  2004年   30篇
  2003年   24篇
  2002年   18篇
  2001年   20篇
  2000年   15篇
  1999年   17篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   6篇
  1993年   6篇
  1992年   16篇
  1991年   13篇
  1990年   12篇
  1989年   16篇
  1988年   6篇
  1987年   10篇
  1986年   4篇
  1985年   10篇
  1984年   6篇
  1982年   3篇
  1981年   5篇
  1979年   7篇
  1978年   3篇
  1977年   6篇
  1975年   5篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1966年   3篇
排序方式: 共有1046条查询结果,搜索用时 11 毫秒
41.
Alhoot MA  Wang SM  Sekaran SD 《PloS one》2012,7(3):e34060

Background

Dengue virus-host cell interaction initiates when the virus binds to the attachment receptors followed by endocytic internalization of the virus particle. Successful entry into the cell is necessary for infection initiation. Currently, there is no protective vaccine or antiviral treatment for dengue infection. Targeting the viral entry pathway has become an attractive therapeutic strategy to block infection. This study aimed to investigate the effect of silencing the GRP78 and clathrin-mediated endocytosis on dengue virus entry and multiplication into HepG2 cells.

Methodology/Principal Findings

HepG2 cells were transfected using specific siRNAs to silence the cellular surface receptor (GRP78) and clathrin-mediated endocytosis pathway. Gene expression analysis showed a marked down-regulation of the targeted genes (87.2%, 90.3%, and 87.8% for GRP78, CLTC, and DNM2 respectively) in transfected HepG2 cells when measured by RT-qPCR. Intracellular and extracellular viral RNA loads were quantified by RT-qPCR to investigate the effect of silencing the attachment receptor and clathrin-mediated endocytosis on dengue virus entry. Silenced cells showed a significant reduction of intracellular (92.4%) and extracellular viral RNA load (71.4%) compared to non-silenced cells. Flow cytometry analysis showed a marked reduction of infected cells (89.7%) in silenced HepG2 cells compared to non-silenced cells. Furthermore, the ability to generate infectious virions using the plaque assay was reduced 1.07 log in silenced HepG2 cells.

Conclusions/Significance

Silencing the attachment receptor and clathrin-mediated endocytosis using siRNA could inhibit dengue virus entry and multiplication into HepG2 cells. This leads to reduction of infected cells as well as the viral load, which might function as a unique and promising therapeutic agent for attenuating dengue infection and prevent the development of dengue fever to the severe life-threatening DHF or DSS. Furthermore, a decrease of viremia in humans can result in the reduction of infected vectors and thus, halt of the transmission cycle.  相似文献   
42.
A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H2O2 could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat.  相似文献   
43.
The green fluorescent protein (GFP) was used as a visual selectable marker to produce transgenic coffee (Coffea canephora) plants following Agrobacterium-mediated transformation. The binary vector pBECKS 2000.7 containing synthetic gene for GFP (sgfp) S65T and the hygromycin phosphotransferase gene hph both controlled by 35S cauliflower mosaic virus CaMV35S promoters was used for transformation. Embryogenic cultures were initiated from hypocotyls and cotyledon leaves of in vitro grown seedlings and used as target material. Selection of transformed tissue was carried out using GFP visual selection as the sole screen or in combination with a low level of antibiotics (hygromycin 10 mg/L), and the efficiency was compared with antibiotics selection alone (hygromycin 30 mg/L). GFP selection reduced the time for transformed somatic embryos formation from 18 weeks on a hygromycin (30 mg/L) antibiotics containing medium to 8 weeks. Moreover, visual selection of GFP combined with low level of antibiotics selection improved the transformation efficiency and increased the number of transformed coffee plants compared to selection in the presence of antibiotics. Molecular analysis confirmed the presence of the sgfp-S65T coding region in the regenerated plants. Visual screening of transformed cells using GFP by Agrobacterium-mediated transformation techniques was found to be efficient and therefore has the potential for development of selectable marker-free transgenic coffee plants.  相似文献   
44.
The cleavage specificity of a monobasic processing dynorphin converting endoprotease is examined with a series of quench fluorescent peptide substrates and compared with the cleavage specificity of prohormone convertases. A dynorphin B-29-derived peptide, Abz-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr-Arg-Ser-Glneddnp (where Abz is o-aminobenzoyl and eddnp is ethylenediamine 2,4-dinitrophenyl), that contains both dibasic and monobasic cleavage sites is efficiently cleaved by the dynorphin converting enzyme and not cleaved by two propeptide processing enzymes, furin and prohormone convertase 1. A shorter prorenin-related peptide, Dnp-Arg-Met-Ala-Arg-Leu-Thr-Leu-eddnp, that contains a monobasic cleavage site is cleaved by the dynorphin converting enzyme and prohormone convertase 1 and not by furin. Substitution of the P1' position by Ala moderately affects cleavage by the dynorphin-processing enzyme and prohormone convertase 1. It is interesting that this substitution results in efficient cleavage by furin. The site of cleavage, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry, is N-terminal to the Arg at the P1 position for the dynorphin converting enzyme and C-terminal to the Arg at the P1 position for furin and prohormone convertase 1. Peptides with additional basic residues at the P2 and at P4 positions also serve as substrates for the dynorphin converting enzyme. This enzyme cleaves shorter peptide substrates with significantly lower efficiency as compared with the longer peptide substrates, suggesting that the dynorphin converting enzyme prefers longer peptides that contain monobasic processing sites as substrates. Taken together, these results suggest that the cleavage specificity of the dynorphin converting enzyme is distinct but related to the cleavage specificity of the prohormone convertases and that multiple enzymes could be involved in the processing of peptide hormones and neuropeptides at monobasic and dibasic sites.  相似文献   
45.
The present study has attempted to elucidate the alteration of serotonin turnover after 24 h REM sleep deprivation in different regions in brain of young rat. Sleep deprivation was induced by the inverted flowerpot technique. Results of this study show increased serotonin turnover after 24 h REM sleep deprivation in all the brain regions except in the hypothalamus. The decreased 5-HT ratio shows increased serotonin in the hypothalamus after 24 h sleep deprivation. This study indicates increased activity of serotonergic neurons in the hypothalamus after 24 h sleep deprivation. This also indicates that the hypothalamus plays a role in the immediate compensatory mechanism during 24 h REM sleep deprivation in young rats.  相似文献   
46.
Free radicals mediated oxidative stress has been implicated in the pathogenesis of smoking-related diseases and antioxidant nutrients are reported to prevent the oxidative damage induced by smoking. Therefore, the present study was conducted to evaluate the antioxidant role of bacoside A (triterpenoid saponin isolated from Bacopa monniera) against chronic cigarette smoking induced oxidative damage in rat brain. Adult male albino rats were exposed to cigarette smoke for a period of 12 weeks and simultaneously administered with bacoside A (10 mg/kg b.w./day, p.o.). Antioxidant status of the brain was assessed from the levels of reduced glutathione, vitamin C, vitamin E, and vitamin A and the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The levels of copper, iron, zinc and selenium in brain and serum ceruloplasmin activity were also measured. Oxidative stress was evident from the diminished levels of both enzymatic and non-enzymatic antioxidants. Alterations in the levels of trace elements with accumulation of copper and iron, and depletion of zinc and selenium were also observed. Bacoside A administration improved the antioxidant status and maintained the levels of trace elements. These results suggest that chronic cigarette smoke exposure enhances oxidative stress, thereby disturbing the tissue defense system and bacoside A protects the brain from the oxidative damage through its antioxidant potential.  相似文献   
47.

Background

Early diagnosis of dengue can assist patient triage and management and prevent unnecessary treatments and interventions. Commercially available assays that detect the dengue virus protein NS1 in the plasma/serum of patients offers the possibility of early and rapid diagnosis.

Methodology/Principal Findings

The sensitivity and specificity of the Pan-E Dengue Early ELISA and the Platelia™ Dengue NS1 Ag assays were compared against a reference diagnosis in 1385 patients in 6 countries in Asia and the Americas. Platelia was more sensitive (66%) than Pan-E (52%) in confirmed dengue cases. Sensitivity varied by geographic region, with both assays generally being more sensitive in patients from SE Asia than the Americas. Both kits were more sensitive for specimens collected within the first few days of illness onset relative to later time points. Pan-E and Platelia were both 100% specific in febrile patients without evidence of acute dengue. In patients with other confirmed diagnoses and healthy blood donors, Platelia was more specific (100%) than Pan-E (90%). For Platelia, when either the NS1 test or the IgM test on the acute sample was positive, the sensitivity versus the reference result was 82% in samples collected in the first four days of fever. NS1 sensitivity was not associated to disease severity (DF or DHF) in the Platelia test, whereas a trend for higher sensitivity in DHF cases was seen in the Pan-E test (however combined with lower overall sensitivity).

Conclusions/Significance

Collectively, this multi-country study suggests that the best performing NS1 assay (Platelia) had moderate sensitivity (median 64%, range 34–76%) and high specificity (100%) for the diagnosis of dengue. The poor sensitivity of the evaluated assays in some geographical regions suggests further assessments are needed. The combination of NS1 and IgM detection in samples collected in the first few days of fever increased the overall dengue diagnostic sensitivity.  相似文献   
48.
Crimean-Congo hemorrhagic fever (CCHF) virus is one among the major zoonosis viral diseases that use the Hyalomma ticks as their transmission vector to cause viral infection to the human and mammalian community. The fatality of infectious is high across the world especially in Africa, Asia, Middle East, and Europe. This study regarding codon usage bias of S, M, and L segments of the CCHF virus pertaining to the host Homo sapiens, reveals in-depth information about the evolutionary characteristics of CCHFV. Relative Synonymous Codon Usage (RSCU), Effective number of codons (ENC) were calculated, to determine the codon usage pattern in each segment. Correlation analysis between Codon adaptation index (CAI), GRAVY (Hydrophobicity), AROMO (Aromaticity), and nucleotide composition revealed bias in the codon usage pattern. There was no strong codon bias found among any segments of the CCHF virus, indicating both the factors i.e., natural selection and mutational pressure shapes the codon usage bias.  相似文献   
49.

BACKGROUND AND AIM:

This study reports the prevalence of five clinically significant variants associated with increased risk of cardiovascular disorders, and variable responses of individuals to commonly prescribed cardiovascular drugs in a South Indian population from the state of Kerala.

MATERIALS AND METHODS:

Genomic DNA isolated from 100 out-patient samples from Kerala were sequenced to examine the frequency of clinically relevant polymorphisms in the genes MYBPC3 (cardiomyopathy), SLCO1B1 (statin-induced myopathy), CYP2C9, VKORC1 (response to warfarin) and CYP2C19 (response to clopidogrel).

RESULTS:

Our analyses revealed the frequency of a 25 bp deletion variant of MYBPC3 associated with risk of cardiomyopathy was 7%, and the SLCO1B1 “C” allele associated with risk for statin-induced myopathy was 15% in this sample group. Among the other variants associated with dose-induced toxicity of warfarin, VKORC1 (c.1639G>A), was detected at 22%, while CYP2C9*3 and CYP2C9*2 alleles were present at a frequency of 15% and 3% respectively. Significantly, the tested sample population showed high prevalence (66%) of CYP2C19*2 variant, which determines response to clopidogrel therapy.

CONCLUSIONS:

We have identified that certain variants associated with cardiovascular disease and related drug response in the five genes, especially those in VKORC1, CYP2C19 and MYBPC3, are highly prevalent in the Kerala population, with almost 2 times higher prevalence of CYP2C19*2 variant compared with other regions in the country. Since the variants chosen in this study have relevance in disease phenotype and/or drug response, and are detected at a higher frequency, this study is likely to encourage clinicians to perform genetic testing before prescribing therapy.  相似文献   
50.
As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an “immune exhaustion”, with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28CD57+CD8+ T cells between the groups. However, the frequency of Tim-3+CD8+ and Tim-3+CD4+ exhausted T cells, but not PD-1+ T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1+CD8+ T cells were directly associated with T cell immune activation in children. The frequency of Tim-3+CD8+ T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号