首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   10篇
  234篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   8篇
  2018年   8篇
  2017年   6篇
  2016年   13篇
  2015年   8篇
  2014年   15篇
  2013年   13篇
  2012年   11篇
  2011年   25篇
  2010年   7篇
  2009年   11篇
  2008年   15篇
  2007年   20篇
  2006年   5篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1981年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
61.
Drug uptake by polymer was modeled using a molecular dynamics (MD) simulation technique. Three drugs—doxorubicin (water soluble), silymarin (sparingly water soluble) and gliclazide (water insoluble)—and six polymers with varied functional groups—alginic acid, sodium alginate, chitosan, Gantrez AN119 (methyl-vinyl–ether-co-malic acid based), Eudragit L100 and Eudragit RSPO (both acrylic acid based)—were selected for the study. The structures were modeled and minimized using molecular mechanics force field (MM+). MD simulation (Gromacs-forcefield, 300 ps, 300 K) of the drug in the vicinity of the polymer molecule in the presence of water molecules was performed, and the interaction energy (IE) between them was calculated. This energy was evaluated with respect to electric-dipole, van der Waals and hydrogen bond forces. A good linear correlation was observed between IE and our own previous data on drug uptake* [R 2 = 0.65, Radj2 = 0.65,Rpre2 = 0.56, {hbox{R}}_{rm{adj}}^2 = 0.65,{hbox{R}}_{rm{pre}}^2 = 0.56, and a F ratio of 30.25, P < 0.001; Devarajan et al. (2005) J Biomed Nanotechnol 1:1–9]. Maximum drug uptake by the polymeric nanoparticles (NP) was achieved in water as the solvent environment. Hydrophilic interaction between NP and water was inversely correlated with drug uptake. The MD simulation method provides a reasonable approximation of drug uptake that will be useful in developing polymer-based drug delivery systems.  相似文献   
62.
KCNH2 (hERG1) encodes the alpha-subunit proteins for the rapidly activating delayed rectifier K+ current (I(Kr)), a major K+ current for cardiac myocyte repolarization. In isolated myocytes I(Kr) frequently is small in amplitude or absent, yet KCNH2 channels and I(Kr) are targets for drug block or mutations to cause long QT syndrome. We hypothesized that KCNH2 channels and I(Kr) are uniquely sensitive to enzymatic damage. To test this hypothesis, we studied heterologously expressed K+, Na+, and L-type Ca2+ channels, and in ventricular myocytes I(Kr), slowly activating delayed rectifier K+ current (I(Ks)), and inward rectifier K+ current (I(K1)), by using electrophysiological and biochemical methods. 1) Specific exogenous serine proteases (protease XIV, XXIV, or proteinase K) selectively degraded KCNH2 current (I(KCNH2)) and its mature channel protein without damaging cell integrity and with minimal effects on the other channel currents; 2) immature KCNH2 channel protein remained intact; 3) smaller molecular mass KCNH2 degradation products appeared; 4) protease XXIV selectively abolished I(Kr); and 5) reculturing HEK-293 cells after protease exposure resulted in the gradual recovery of I(KCNH2) and its mature channel protein over several hours. Thus the channel protein for I(KCNH2) and I(Kr) is uniquely sensitive to proteolysis. Analysis of the degradation products suggests selective proteolysis within the S5-pore extracellular linker, which is structurally unique among Kv channels. These data provide 1) a new mechanism to account for low I(Kr) density in some isolated myocytes, 2) evidence that most complexly glycosylated KCNH2 channel protein is in the plasma membrane, and 3) new insight into the rate of biogenesis of KCNH2 channel protein within cells.  相似文献   
63.
64.
2,2,2-Trifluoroethanol (TFE) is widely used to induce helix formation in peptides and proteins, but the mechanism behind this effect is still poorly understood. Several recent papers have proposed that TFE acts by selectively desolvating the peptide backbone groups of the helix state. Infrared (IR) spectroscopy of the amide I band of polypeptides can be used to probe both secondary structure and backbone solvation, making this technique well suited for addressing the effect of TFE on polypeptide conformation. In this paper, we report the IR spectra as a function of TFE concentration for an alanine-rich peptide based on the repeat (AAKAA)(n)(). The IR spectra confirm that TFE desolvates the helical state of the peptide to a greater extent than the random coil state. Moreover, using a series of specifically (13)C-labeled peptides, the precise residues desolvated in the presence of TFE were identified. The residues most desolvated by TFE are the alanines located at position i - 4 in the sequence, where i is a lysine residue. This pattern of desolvation is consistent with molecular dynamics simulations which predict strong interactions between the lysine side chain at position n and the backbone carbonyl of the alanine at position i - 4. This is the first direct spectroscopic evidence of specific desolvation of helix backbone atoms in model alanine-rich peptides.  相似文献   
65.
Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis.  相似文献   
66.

Objective

To determine the expression patterns of NF-κB regulators and target genes in clear cell renal cell carcinoma (ccRCC), their correlation with von Hippel Lindau (VHL) mutational status, and their association with survival outcomes.

Methods

Meta-analyses were carried out on published ccRCC gene expression datasets by RankProd, a non-parametric statistical method. DEGs with a False Discovery Rate of < 0.05 by this method were considered significant, and intersected with a curated list of NF-κB regulators and targets to determine the nature and extent of NF-κB deregulation in ccRCC.

Results

A highly-disproportionate fraction (~40%; p < 0.001) of NF-κB regulators and target genes were found to be up-regulated in ccRCC, indicative of elevated NF-κB activity in this cancer. A subset of these genes, comprising a key NF-κB regulator (IKBKB) and established mediators of the NF-κB cell-survival and pro-inflammatory responses (MMP9, PSMB9, and SOD2), correlated with higher relative risk, poorer prognosis, and reduced overall patient survival. Surprisingly, levels of several interferon regulatory factors (IRFs) and interferon target genes were also elevated in ccRCC, indicating that an ‘interferon signature’ may represent a novel feature of this disease. Loss of VHL gene expression correlated strongly with the appearance of NF-κB- and interferon gene signatures in both familial and sporadic cases of ccRCC. As NF-κB controls expression of key interferon signaling nodes, our results suggest a causal link between VHL loss, elevated NF-κB activity, and the appearance of an interferon signature during ccRCC tumorigenesis.

Conclusions

These findings identify NF-κB and interferon signatures as clinical features of ccRCC, provide strong rationale for the incorporation of NF-κB inhibitors and/or and the exploitation of interferon signaling in the treatment of ccRCC, and supply new NF-κB targets for potential therapeutic intervention in this currently-incurable malignancy.  相似文献   
67.
A series of cinnamide derivatives was designed as potential antimycobacterial agents using molecular hybridization approach. The diamine moiety, a key feature of ethambutol and its other analogs, and certain structural features of cerulenin and cinnamic acid were hybridized to obtain cinnamide derivatives. The minimum inhibitory concentration (MIC) of all synthesized compounds was determined against M. tuberculosis H37Rv using Resazurin Microtitre plate Assay (REMA) method. The synthesized molecules showed good to moderate activity with MIC in the range of 5-150 μM and good safety profile. Additionally, the most potent compound 1a, having MIC 5.1 μM exhibited synergy with rifampicin.  相似文献   
68.
The toxic effect of Ni2+ on photosynthetic electron transport was studied in a photosystem II submembrane fraction. It was shown that Ni2+ strongly inhibits oxygen evolution in the millimolar range of concentration. The inhibition was insensitive to NaCl but significantly decreased in the presence of CaCl2. Maximal chlorophyll fluorescence, together with variable fluorescence, maximal quantum yield of photosystem II, and flash-induced fluorescence decays were all significantly declined by Ni2+. Further, the extrinsic polypeptides of 16 and 24 kDa associated with the oxygen-evolving complex of photosystem II were depleted following Ni2+ treatment. It was deduced that interaction of Ni2+ with these polypeptides caused a conformational change that induced their release together with Ca2+ from the oxygen-evolving complex of photosystem II with consequent inhibition of the electron transport activity.  相似文献   
69.
The p21-activated kinases (Paks) serve as effectors of the Rho family GTPases Rac and Cdc42. The six human Paks are divided into two groups based on sequence similarity. Group I Paks (Pak1 to -3) phosphorylate a number of substrates linking this group to regulation of the cytoskeleton and both proliferative and anti-apoptotic signaling. Group II Paks (Pak4 to -6) are thought to play distinct functional roles, yet their few known substrates are also targeted by Group I Paks. To determine if the two groups recognize distinct target sequences, we used a degenerate peptide library method to comprehensively characterize the consensus phosphorylation motifs of Group I and II Paks. We find that Pak1 and Pak2 exhibit virtually identical substrate specificity that is distinct from that of Pak4. Based on structural comparisons and mutagenesis, we identified two key amino acid residues that mediate the distinct specificities of Group I and II Paks and suggest a structural basis for these differences. These results implicate, for the first time, residues from the small lobe of a kinase in substrate selectivity. Finally, we utilized the Pak1 consensus motif to predict a novel Pak1 phosphorylation site in Pix (Pak-interactive exchange factor) and demonstrate that Pak1 phosphorylates this site both in vitro and in cultured cells. Collectively, these results elucidate the specificity of Pak kinases and illustrate a general method for the identification of novel sites phosphorylated by Paks.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号