首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   10篇
  234篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   8篇
  2018年   8篇
  2017年   6篇
  2016年   13篇
  2015年   8篇
  2014年   15篇
  2013年   13篇
  2012年   11篇
  2011年   25篇
  2010年   7篇
  2009年   11篇
  2008年   15篇
  2007年   20篇
  2006年   5篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1981年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
21.
We assessed the responsiveness of six human cervical cancer cell lines to transforming growth factor (TGF)-beta with p3TP-lux reporter assay and found that HeLa and SiHa cells were highly responsive to TGF-beta. However, when pSBE4-BV/Luc reporter with four Smad binding elements was used, only the SiHa, not the HeLa, cells showed Smad activation. Smad DNA binding activity was relatively more in SiHa than in HeLa cells upon TGF-beta treatment, and the active complex contained Smad 2 and Smad 4. In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, HeLa cells treated with 5 ng/ml of TGF-beta for 24 h showed proliferation, whereas SiHa cells showed growth inhibition under the same conditions. TGF-beta treatment resulted in G(0)/G(1) arrest with a reduction in S-phase only in SiHa cells. A chemical inhibitor of Smad activation (SB203580) blocked the growth inhibitory effect of TGF-beta in SiHa, whereas the proliferative response in HeLa was unaffected. TGF-beta-induced translocation of phospho-Smad 2 was relatively less in HeLa than in SiHa cells. MAPK activation occurred within 5 min and persisted up to 15 min upon TGF-beta treatment in HeLa but was negligible in SiHa cells. TGF-beta activated JNK in HeLa, but SiHa cells showed a down-regulation of its activity. When an inhibitor of MAPK (U0126) was used, the TGF-beta-mediated proliferative response in HeLa cells was completely abolished. SB203580 did not affect MAPK activation induced by TGF-beta in HeLa cells. We report for the first time an activation, presumably independent of Smad activation, of TGF-beta-dependent MAPK within 5 min of treatment that resulted in cell cycle progression in a cervical adenocarcinoma cell line, HeLa.  相似文献   
22.
Polyphenol phytoalexin (resveratrol), found in grapes and red wine is a strong chemopreventive agent with promising safety records with human consumption and unique forms of cell death induction in a variety of tumor cells. However, the mechanism of resveratrol-induced apoptosis upstream of mitochondria is still not defined. The results from this study suggest that caspase-2 activation occurs upstream of mitochondria in resveratrol-treated cells. The upstream activation of caspase-2 is not dependent on its antioxidant property or NF-kappaB inhibition. The activated caspase-2 triggers mitochondrial apoptotic events by inducing conformational changes in Bax/Bak with subsequent release of cytochrome c, apoptosis-inducing factor, and endonuclease G. Caspase-8 activation seems to be independent of these events and does not appear to be mediated by classical death receptor processing or downstream caspases. Both caspase-2 and caspase-8 contribute toward the mitochondrial translocation of Bid, since neither caspase-8 inhibition nor caspase-2 inhibition could prevent translocation of Bid DsRed into mitochondria. Caspase-2 inhibitors or antisense silencing of caspase-2 prevented cell death induced by resveratrol and partially prevented processing of downstream caspases, including caspase-9, caspase-3, and caspase-8. Studies using mouse embryonic fibroblasts deficient for both Bax and Bak indicate the contribution of both Bax and Bak in mediating cell death induced by resveratrol and the existence of Bax/Bak-independent cell death possibly through caspase-8- or caspase-2-mediated mitochondria-independent downstream caspase processing.  相似文献   
23.
24.
Gamma-band (25-140 Hz) oscillations are a hallmark of sensory processing in the forebrain. The optic tectum (OT), a midbrain structure implicated in sensorimotor processing and attention, also exhibits gamma oscillations. However, the origin and mechanisms of these oscillations remain unknown. We discovered that in acute slices of the avian OT, persistent (>100 ms) epochs of large amplitude gamma oscillations can be evoked that closely resemble those recorded in vivo. We found that cholinergic, glutamatergic, and GABAergic mechanisms differentially regulate the structure of the oscillations at various timescales. These persistent oscillations originate in the multisensory layers of the OT and are broadcast to visual layers via the cholinergic nucleus Ipc, providing a potential mechanism for enhancing the processing of visual information within the OT. The finding that the midbrain contains an intrinsic gamma-generating circuit suggests that the OT could use its own oscillatory code to route signals to forebrain networks.  相似文献   
25.
Defects in ankyrin underlie many hereditary disorders involving the mislocalization of membrane proteins. Such phenotypes are usually attributed to ankyrin's role in stabilizing a plasma membrane scaffold, but this assumption may not be accurate. We found in Madin-Darby canine kidney cells and in other cultured cells that the 25-residue ankyrin-binding sequence of alpha(1)-Na(+)-K(+)-ATPase facilitates the entry of alpha(1),beta(1)-Na(+)-K(+)-ATPase into the secretory pathway and that replacement of the cytoplasmic domain of vesicular stomatitis virus G protein (VSV-G) with this ankyrin-binding sequence bestows ankyrin dependency on the endoplasmic reticulum (ER) to Golgi trafficking of VSV-G. Expression of the ankyrin-binding sequence of alpha(1)-Na(+)-K(+)-ATPase alone as a soluble cytosolic peptide acts in trans to selectively block ER to Golgi transport of both wild-type alpha(1)-Na(+)-K(+)-ATPase and a VSV-G fusion protein that includes the ankyrin-binding sequence, whereas the trafficking of other proteins remains unaffected. Similar phenotypes are also generated by small hairpin RNA-mediated knockdown of ankyrin R or the depletion of ankyrin in semipermeabilized cells. These data indicate that the adapter protein ankyrin acts not only at the plasma membrane but also early in the secretory pathway to facilitate the intracellular trafficking of alpha(1)-Na(+)-K(+)-ATPase and presumably other selected proteins. This novel ankyrin-dependent assembly pathway suggests a mechanism whereby hereditary disorders of ankyrin may be manifested as diseases of membrane protein ER retention or mislocalization.  相似文献   
26.
These studies explore the consequences of activating the prolyl hydroxylase (PHD) O(2)-sensing pathway in spontaneously twitching neonatal cardiomyocytes. Full activation of the PHD pathway was achieved using the broad-spectrum PHD inhibitor (PHI) dimethyloxaloylglycine (DMOG). PHI treatment of cardiomyocytes caused an 85% decrease in O(2) consumption and a 300% increase in lactic acid production under basal conditions. This indicates a approximately 75% decrease in ATP turnover rate, inasmuch as the increased ATP generation by glycolysis is inadequate to compensate for the lower respiration. To determine the extent to which decreased ATP turnover underlies the suppressed O(2) consumption, mitochondria were uncoupled with 2,4-dinitrophenol. We were surprised to find that 2,4-dinitrophenol failed to increase O(2) consumption by PHI-treated cells, indicating that electron transport chain activity, rather than ATP turnover rate, limits respiration in PHI-treated cardiomyocytes. Silencing of hypoxia-inducible factor-1alpha (HIF-1alpha) expression restored the ability of uncoupled PHI-treated myocytes to increase O(2) consumption; however, basal O(2) uptake rates remained low because of the unabated suppression of cellular ATP consumption. Thus it appears that respiration is actively "clamped" through an HIF-dependent mechanism, whereas HIF-independent mechanisms are responsible for downregulation of ATP consumption. In addition, we find that PHD pathway activation enables mitochondria to utilize fumarate as a terminal electron acceptor when cytochrome c oxidase is inactive. The source of fumarate for this unusual respiration is derived from aspartate via the purine nucleotide cycle. In sum, these studies show that the O(2)-sensing pathway is sufficient to actively "clamp" O(2) consumption and independently suppress cellular ATP consumption. The PHD pathway also enables the mitochondria to utilize fumarate for respiration.  相似文献   
27.
28.
Neuronal voltage-gated potassium channels, KV7s, are the molecular mediators of the M current and regulate membrane excitability in the central and peripheral neuronal systems. Herein, we report novel small molecule KV7 openers that demonstrate anti-seizure activities in electroshock and pentylenetetrazol-induced seizure models without influencing Rotarod readouts in mice. The anti-seizure activity was determined to be proportional to the unbound concentration in the brain. KV7 channels are also expressed in the bladder smooth muscle (detrusor) and activation of these channels may cause localized undesired effects. Therefore, the impact of individual KV7 isoforms was investigated in human detrusor tissue using a panel of KV7 openers with distinct activity profiles among KV7 isoforms. KCNQ4 and KCNQ5 mRNA were highly expressed in detrusor tissue, yet a compound that has significantly reduced activity on homomeric KV7.4 did not reduce detrusor contraction. This may suggest that the homomeric KV7.4 channel plays a less significant role in bladder contraction and further investigation is needed.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号