首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   7篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   9篇
  2013年   6篇
  2012年   12篇
  2011年   14篇
  2010年   6篇
  2009年   10篇
  2008年   5篇
  2007年   12篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1974年   2篇
排序方式: 共有149条查询结果,搜索用时 140 毫秒
71.
Plumbago zeylanica, a traditional Indian herb is being used for the therapy of rheumatism and has been approved for anti-tumor activity. However, the molecular mechanisms involved in the biological action are not very well understood. In this study, the anti-invasive activities of P. zeylanica methanolic extract (PME) and pure compound 3β-hydroxylup-20(29)-ene-27,28-dioic acid (PZP) isolated from it are investigated in vitro. PME and PZP were noted to have the ability to induce apoptosis as assessed by flow cytometry. Further, the molecular mechanism of apoptosis induced by PME and PZP was found by the loss of mitochondrial membrane potential with the down regulation of Bcl-2, increased expression of Bad, release of cytochrome c, activation of caspase-3 and cleavage of PARP leading to DNA fragmentation. Importantly, both PME and PZP were observed to suppress MDA-MB-231 cells adhesion to the fibronectin-coated substrate and also inhibited the wound healing migration and invasion of MDA-MB-231 cells through the reconstituted extracellular matrix. Gelatin zymography revealed that PME and PZP decreased the secretion of matrix metalloproteinases-2 (MMP-2) and metalloproteinases-9 (MMP-9). Interestingly both PME and PZP exerted an inhibitory effect on the protein levels of p-PI3K, p-Akt, p-JNK, p-ERK1/2, MMP-2, MMP-9, VEGF and HIF-1α that are consistent with the observed anti-metastatic effect. Collectively, these data provide the molecular basis of the anti-proliferative and anti-metastatic effects of PME and PZP.  相似文献   
72.
Myxococcus xanthus is a Gram‐negative bacterium capable of complex developmental processes involving vegetative swarming and fruiting body formation. Social (S‐) gliding motility, one of the two motility systems used by M. xanthus, requires at least two cell surface structures: type IV pili (TFP) and extracellular polysaccharides (EPS). Extended TFP that are composed of thousands of copies of PilA retract upon binding to EPS and thereby pull the cell forward. TFP also act as external sensor to regulate EPS production. In this study, we generated a random PilA mutant library and identified one derivative, SW1066, which completely failed to undergo developmental processes. Detailed characterization revealed that SW1066 produced very little EPS but wild‐type amounts of PilA. These mutated PilA subunits, however, are unable to assemble into functional TFP despite their ability to localize to the membrane. By preventing the mutated PilA of SW1066 to translocate from the cytoplasm to the membrane, fruiting body formation and EPS production were restored to the levels observed in mutant strains lacking PilA. This apparent connection between PilA membrane accumulation and reduction in surface EPS implies that specific cellular PilA localization are required to maintain the EPS level necessary to sustain normal S‐motility in M. xanthus.  相似文献   
73.
Fluorescent pseudomonads catabolize glucose simultaneously by two different pathways, namely, the oxidative pathway in periplasm and the phosphorylative pathway in cytoplasm. This study provides evidence for the role of glucose metabolism in the regulation of pyoverdine synthesis in Pseudomonas putida S11. We have characterized the influence of direct oxidation of glucose in periplasm on pyoverdine synthesis in P. putida S11. We identified a Tn5 transposon mutant of P. putida S11 showing increased pyoverdine production in minimal glucose medium (MGM). This mutant designated as IST1 had Tn5 insertion in glucose dehydrogenase (gcd) gene. To verify the role of periplasmic oxidation of glucose on pyoverdine synthesis, we constructed mutants S11 Gcd? and S11 PqqF? by antibiotic cassette mutagenesis. These mutants of P. putida S11 with loss of glucose dehydrogenase gene (gcd) or cofactor pyrroloquinoline quinone biosynthesis gene (pqqF) showed increased pyoverdine synthesis and impaired acid production in MGM. In minimal gluconate medium, the pyoverdine production of wild-type strain S11 and mutants S11 Gcd? and S11 PqqF? was higher than in MGM indicating that gluconate did not affect pyoverdine synthesis. In MGM containing PIPES–NaOH (pH?7.5) buffer which prevent pH changes due to gluconic acid production, strain S11 produced higher amount of pyoverdine similar to mutants S11 Gcd? and S11 PqqF?. Therefore, it is proposed that periplasmic oxidation of glucose to gluconic acid decreases the pH of MGM and thereby influences pyoverdine synthesis of strain S11. The increased pyoverdine synthesis enhanced biotic and abiotic surface colonization of the strain S11.  相似文献   
74.
The discovery of direct cell reprogramming and induced pluripotent stem (iPS) cell technology opened up new avenues for the application of non-viral, transposon-based gene delivery systems. The Sleeping Beauty (SB) transposon is highly advanced for versatile genetic manipulations in mammalian cells. We established iPS cell reprogramming of mouse embryonic fibroblasts and human foreskin fibroblasts by transposition of OSKM (Oct4, Sox2, Klf4 and c-Myc) and OSKML (OSKM + Lin28) expression cassettes mobilized by the SB100X hyperactive transposase. The efficiency of iPS cell derivation with SB transposon system was in the range of that obtained with retroviral vectors. Co-expression of the miRNA302/367 cluster together with OSKM significantly improved reprogramming efficiency and accelerated the temporal kinetics of reprogramming. The iPS cells displayed a stable karyotype, and hallmarks of pluripotency including expression of stem cell markers and the ability to differentiate into embryoid bodies in vitro. We demonstrate Cre recombinase-mediated exchange allowing simultaneous removal of the reprogramming cassette and targeted knock-in of an expression cassette of interest into the transposon-tagged locus in mouse iPS cells. This strategy would allow correction of a genetic defect by site-specific insertion of a therapeutic gene construct into ‘safe harbor’ sites in the genomes of autologous, patient-derived iPS cells.  相似文献   
75.
Growth factor receptor-bound protein 14 (Grb14) is an adapter protein implicated in receptor tyrosine kinase signaling. Grb14(-/-) studies highlight both the positive and negative roles of Grb14 in receptor tyrosine kinase signaling in a tissue-specific manner. In this study, we made a novel finding that Grb14 inhibits the activity of PTP1B, the major negative regulator of insulin receptor (IR) signaling, in a phosphorylation-regulated manner. Phosphorylation of Tyr-347 in the BPS domain of Grb14 is critical for interaction with PTP1B, resulting in the competitive inhibition of PTP1B activity. We also found that rhodopsin-regulated Src kinase activation in retina leads to the phosphorylation of Grb14. Further, ablation of Grb14 resulted in significantly elevated retinal PTP1B activity in vivo. PTP1B is known to be regulated by oxidation, glutathionylation, phosphorylation, and SUMOlyation, and our study for the first time demonstrates the inhibition of PTP1B activity in vivo by protein molecule Grb14 in a tissue-specific manner.  相似文献   
76.
The effect of glutathione monoester (GME) on buthionine sulfoximine (BSO) mediated glutathione (GSH) depletion in rats was studied to understand the defensive role of intraperitoneally supplemented GSH. Administration of glutathione mono ester (GME) (at a dose of 5 mmole/kg body weight, twice a day for 30 days) significantly prevented the buthionine sulfoximine (at a dose of 4 mmole/kg body weight, twice a day for 30 days) induced alterations. This study suggests that glutathione mono ester is hepatoprotective and plays an important role in preventing lipid peroxidation, which leads to cytotoxic effects.  相似文献   
77.
78.
Acute Lymphoblastic Leukemia, commonly known as ALL, is a predominant form of cancer during childhood. With the advent of modern healthcare support, the 5-year survival rate has been impressive in the recent past. However, long-term ALL survivors embattle several treatment-related medical and socio-economic complications due to excessive and inordinate chemotherapy doses received during treatment. In this work, we present a model-based approach to personalize 6-Mercaptopurine (6-MP) treatment for childhood ALL with a provision for incorporating the pharmacogenomic variations among patients. Semi-mechanistic mathematical models were developed and validated for i) 6-MP metabolism, ii) red blood cell mean corpuscular volume (MCV) dynamics, a surrogate marker for treatment efficacy, and iii) leukopenia, a major side-effect. With the constraint of getting limited data from clinics, a global sensitivity analysis based model reduction technique was employed to reduce the parameter space arising from semi-mechanistic models. The reduced, sensitive parameters were used to individualize the average patient model to a specific patient so as to minimize the model uncertainty. Models fit the data well and mimic diverse behavior observed among patients with minimum parameters. The model was validated with real patient data obtained from literature and Riley Hospital for Children in Indianapolis. Patient models were used to optimize the dose for an individual patient through nonlinear model predictive control. The implementation of our approach in clinical practice is realizable with routinely measured complete blood counts (CBC) and a few additional metabolite measurements. The proposed approach promises to achieve model-based individualized treatment to a specific patient, as opposed to a standard-dose-for-all, and to prescribe an optimal dose for a desired outcome with minimum side-effects.  相似文献   
79.
Morin (3,5,7,2′,4′-pentahydroxyflavone), a plant-derived flavonoid belonging to the subclass of flavonol is believed to play a role in chemoprevention and cancer chemotherapy. In this study, we found that the cotreatment of morin (500 ppm in diet) for 16 weeks to N-nitosodiethylamine-induced (200 mg/kg bodyweight in drinking water) rats provides protection against the oxidative stress caused by the carcinogen and thereby prevents hepatocellular carcinogenesis. On administration of the carcinogen, the level of lipid peroxidation increased markedly, but was found to be significantly lowered by morin treatment. On the contrary, the antioxidant levels in both liver and serum were decreased in carcinogen-administered animals, which was improved to normalcy upon morin administration. Cotreatment with morin prevented the elevation of marker enzymes induced by N-nitrosodiethylamine. The body weight of the animals decreased and their relative liver weight increased significantly on N-nitrosodiethylamine administration when compared to control group. However, cotreatment with morin significantly prevented the decrease of the body weight and increase in relative liver weight caused by DEN. Histological observations of liver tissue too correlated with the biochemical observations. In conclusion, these findings indicate that morin prevents lipid peroxidation, hepatic cell damage and protects the antioxidant system in N-nitrosodiethylamine-induced hepatocellular carcinogenesis.  相似文献   
80.
To determine if 6 weeks of supplementation with vitamins E and C could alleviate exercise-induced lipid peroxidation and inflammation, we studied 22 runners during a 50 km ultramarathon. Subjects were randomly assigned to one of two groups: (1) placebos (PL) or (2) antioxidants (AO: 1000 mg vitamin C and 300 mg RRR-alpha-tocopheryl acetate). Blood samples were obtained prior to supplementation (baseline), after 3 weeks of supplementation, 1 h pre-, mid-, and postrace, 2 h postrace and for 6 days postrace. Plasma levels of alpha-tocopherol (alpha-TOH), ascorbic acid (AA), uric acid (UA), F2-isoprostanes (F2-IsoPs), tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and C-reactive protein (CRP) were measured. With supplementation, plasma alpha-TOH and AA increased in the AO but not the PL group. Although F2-IsoP levels were similar between groups at baseline, 28 +/- 2 (PL) and 27 +/- 3 pg/ml (AO), F2-IsoPs increased during the run only in the PL group (41 +/- 3 pg/ml). In PL women, F2-IsoPs were elevated postrace (p <.01), but returned to prerace concentrations by 2 h postrace. In PL men, F2-IsoP concentrations were higher postrace, 2 h postrace, and 1, 2, 3, 4, and 6 days postrace (PL vs. AO group, each p <.03). Markers of inflammation were increased dramatically in response to the run regardless of treatment group. Thus, AO supplementation prevented endurance exercise-induced lipid peroxidation but had no effect on inflammatory markers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号