首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   70篇
  2023年   3篇
  2022年   8篇
  2021年   19篇
  2020年   10篇
  2019年   11篇
  2018年   9篇
  2017年   14篇
  2016年   11篇
  2015年   39篇
  2014年   46篇
  2013年   56篇
  2012年   63篇
  2011年   61篇
  2010年   41篇
  2009年   42篇
  2008年   40篇
  2007年   69篇
  2006年   55篇
  2005年   52篇
  2004年   53篇
  2003年   39篇
  2002年   29篇
  2001年   21篇
  2000年   20篇
  1999年   16篇
  1998年   8篇
  1997年   10篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   18篇
  1991年   16篇
  1990年   8篇
  1989年   5篇
  1988年   10篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   8篇
  1978年   11篇
  1977年   3篇
  1975年   3篇
  1974年   4篇
  1967年   3篇
  1966年   5篇
排序方式: 共有1003条查询结果,搜索用时 15 毫秒
101.
The variant surface glycoprotein (VSG) of African trypanosomes has a structural role in protecting other cell surface proteins from effector molecules of the mammalian immune system and also undergoes antigenic variation necessary for a persistent infection in a host. Here we have reported the solution structure of a VSG type 2 C-terminal domain from MITat1.2, completing the first structure of both domains of a VSG. The isolated C-terminal domain is a monomer in solution and forms a novel fold, which commences with a short alpha-helix followed by a single turn of 3(10)-helix and connected by a short loop to a small anti-parallel beta-sheet and then a longer alpha-helix at the C terminus. This compact domain is flanked by two unstructured regions. The structured part of the domain contains 42 residues, and the core comprises 2 disulfide bonds and 2 hydrophobic residues. These cysteines and hydrophobic residues are conserved in other VSGs, and we have modeled the structures of two further VSG C-terminal domains using the structure of MITat1.2. The models suggest that the overall structure of the core is conserved in the different VSGs but that the C-terminal alpha-helix is of variable length and depends on the presence of charged residues. The results provided evidence for a conserved tertiary structure for all the type 2 VSG C-terminal domains, indicated that VSG dimers form through interactions between N-terminal domains, and showed that the selection pressure for sequence variation within a conserved tertiary structure acts on the whole of the VSG molecule.  相似文献   
102.
Insolubility in non-ionic detergents such as Triton X-100 is a widely used biochemical criterion for characterization of membrane domains. We report here a novel green fluorescent protein fluorescence-based approach to directly determine detergent insolubility of specific membrane proteins. We have applied this method to explore the detergent resistance of an important G-protein coupled receptor, the serotonin1A (5-HT1A) receptor. Our results show, for the first time, that a small yet significant fraction of the 5-HT1A receptor exhibits detergent insolubility. These results are validated by control experiments involving fluorescent lipid probes and protein markers. Our results assume relevance in the context of localization of the 5-HT1A receptor in membrane domains and its significance in receptor function and signaling.  相似文献   
103.
GTPase activating protein for ARF GTPAse (ARFGAP) from the malaria parasite Plasmodium falciparum was expressed, purified and crystallized. Crystals of ARFGAP belong to trigonal space group P321 (or its enantiomorph) with unit cell parameters a=b=95.89 and c=92.46 A. Diffraction data to 2.4-A resolution have been collected. Calculation of self-rotation function suggested the presence of two molecules in the asymmetric unit.  相似文献   
104.
Activation-induced cell death (AICD) as well as programmed cell death (PCD) serve to control the expansion of activated T cells to limit untoward side effects of continued effector responses by T cells and to maintain homeostasis. AICD of T cells in tumor immunotherapy can be counterproductive particularly if the activated T cells undergo apoptotic death after the very first secondary encounter of the specific epitope. We examined the extent to which tumor epitope-specific CTLs that are activated and expanded in an in vitro-matured dendritic cell-based primary stimulation protocol undergo AICD following their first secondary encounter of the cognate epitope. Using the MART-1(27-35) epitope as a prototype vaccine epitope, we also examined whether these CTLs could be rescued from AICD. Our results demonstrate that a substantial fraction of MART-1(27-35) epitope-specific primary CTLs undergo AICD upon the very first secondary encounter of the cognate epitope. The AICD in these CTLs is neither caspase dependent nor is it triggered by the extrinsic death signaling pathways (Fas, TNFR, etc.). These CTLs, interestingly, could be rescued from AICD by the JNK inhibitor, SP600125. We also found that SP600125 interferes with their IFN-gamma response but does not block their cytolytic function. The rescued CTLs, however, regain their capacity to synthesize IFN-gamma if continued in culture without the inhibitor. These observations have implications in tumor immunotherapy and in further studies for regulation of AICD in CTLs.  相似文献   
105.
The role of virus infection in a simple phytoplankton zooplankton system   总被引:4,自引:0,他引:4  
Many planktonic species show spectacular bursts ("blooms") in population density. Though viral infections are known to cause behavioural and other changes in phytoplankton and other aquatic species, yet their role in regulating the phytoplankton population is still far from being understood. To study the role of viral diseases in the planktonic species, we model the phytoplankton-zooplankton system as a prey-predator system. Here the prey (phytoplankton) species is infected with a viral disease that divides the prey population into susceptible and infected classes, with the infected prey being more vulnerable to predation by the predator (zooplankton). The dynamical behaviour of the system is investigated from the point of view of stability and persistence both analytically and numerically. The model shows that infection can be sustained only above a threshold of force of infection, and, there exists a range in the infection rate where this system shows "bloom"-like stable limit cycle oscillations. The time series of natural "blooms" with different types of irregular oscillations can arise in this model simply from a biologically realistic feature, i.e., by the random variation of the epidemiological parameter (rate of infection) in the infected prey population. The difference in mean strength of infection alone can lead to the different types of patterns observed in natural planktonic blooms.  相似文献   
106.
The extracellular matrix (ECM) or cell wall is a dynamic system and serves as the first line mediator in cell signaling to perceive and transmit extra- and intercellular signals in many pathways. Although ECM is a conserved compartment ubiquitously present throughout evolution, a compositional variation does exist among different organisms. ECM proteins account for 10% of the ECM mass, however, comprise several hundreds of different molecules with diverse functions. To understand the function of ECM proteins, we have developed the cell wall proteome of a crop legume, chickpea (Cicer arietinum). This comprehensive overview of the proteome would provide a basis for future comparative proteomic efforts for this important crop. Proteomic analyses revealed new ECM proteins of unknown functions vis-à-vis the presence of many known cell wall proteins. In addition, we report here evidence for the presence of unexpected proteins with known biochemical activities, which have never been associated with ECM.  相似文献   
107.
108.
Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas’ disease. We have undertaken a detailed structure–activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme–ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60–70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.  相似文献   
109.
Rotavirus (RV) diarrhoea causes huge number deaths in children less than 5 years of age. In spite of available vaccines, it has been difficult to combat RV due to large number of antigenically distinct genotypes, high mutation rates, generation of reassortant viruses due to segmented genome. RV is an eukaryotic virus which utilizes host cell machinery for its propagation. Since RV only encodes 12 proteins, post-translational modification (PTM) is important mechanism for modification, which consequently alters their function. A single protein exhibiting different functions in different locations or in different subcellular sites, are known to be 'moonlighting'. So there is a possibility that viral proteins moonlight in separate location and in different time to exhibit diverse cellular effects. Based on the primary sequence, the putative behaviour of proteins in cellular environment can be predicted, which helps to classify them into different functional families with high reliability score. In this study, sites for phosphorylation, glycosylation and SUMOylation of the six RV structural proteins (VP1, VP2, VP3, VP4, VP6 & VP7) & five non-structural proteins (NSP1, NSP2,NSP3,NSP4 & NSP5) and the functional families were predicted. As NSP6 is a very small protein and not required for virus growth & replication, it was not included in the study. Classification of RV proteins revealed multiple putative functions of each structural protein and varied number of PTM sites, indicating that RV proteins may also moonlight depending on requirements during viral life cycle. Targeting the crucial PTM sites on RV structural proteins may have implications in developing future anti-rotaviral strategies.  相似文献   
110.
A blue luminescent dichlorido-bridged dinuclear copper(II) (S = 1/2) complex, [CuII2(HL)2(μ-Cl)2]·2H2O, 1a was synthesized with the 1:1 reaction of the acyclic tridentate salicylaldehyde 2-pyridyl hydrazone ligand, HL, 1. The complex 1a displays multiple bands in the visible region (400-470 nm). The association constant (Kass, UV-Vis) was found to be 1.186 × 104 for 1a at 298 K. The copper(II)-copper(III) oxidation potential lies near 0.32 V versus Ag/AgCl electrode. On excitation at 390 nm, the ligand 1 strongly emits at 444 nm due to an intraligand 1(π-π) transition. Upon complexation with copper(II) the emission peak is slightly red shifted (λex 390 nm, λem 450 nm, F/F0 0.81) with little quenching. Molecular structure of 1a (Cu···Cu 3.523 Å) has been determined by single crystal X-ray diffraction studies. DFT and TDDFT calculations strongly support the spectral behavior of the ligand and the complex. The complex 1a exhibits a strong interaction towards DNA as revealed from the Kb (intrinsic binding constant) 2.05 × 104 M−1 and Ksv (Stern-Volmer quenching constant) 2.47 values. The complex exhibits cytotoxic effect and the LD50 value for HeLa cells was calculated as 5.44 μM at which the cell cycle was arrested at G2/M phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号