首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   618篇
  免费   41篇
  2023年   8篇
  2022年   13篇
  2021年   21篇
  2020年   9篇
  2019年   6篇
  2018年   11篇
  2017年   17篇
  2016年   19篇
  2015年   24篇
  2014年   29篇
  2013年   41篇
  2012年   52篇
  2011年   55篇
  2010年   24篇
  2009年   24篇
  2008年   21篇
  2007年   28篇
  2006年   19篇
  2005年   24篇
  2004年   18篇
  2003年   8篇
  2002年   19篇
  2001年   11篇
  2000年   15篇
  1999年   10篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1994年   8篇
  1992年   7篇
  1991年   10篇
  1990年   3篇
  1989年   7篇
  1988年   4篇
  1987年   7篇
  1986年   11篇
  1985年   6篇
  1983年   5篇
  1982年   4篇
  1981年   9篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
排序方式: 共有659条查询结果,搜索用时 15 毫秒
41.
42.
Background:This study correlates the serum levels of sCD95 & TNF-α with a simple cell-based assay to evaluate the capacity of the serum sample to induce apoptosis in Jurkat cells. Interlinking of these parameters can be explored to design a minimum invasive diagnostic strategy for cervical cancer (CC).Methods:Sera samples were assessed to induce apoptosis in Jurkat cells through FACS. Serum levels of sCD95 and TNF-α were measured by ELISA. JNK phosphorylation was evaluated in sera incubated Jurkat cells. Data was scrutinized through statistical analysis.Results:Significantly higher serum levels of sCD95 and lower TNF-α levels were observed in CC patients; their sera samples inhibited induction of apoptosis in Jurkat cells through reduced JNK phosphorylation. Statistical analysis linked these three parameters for the early screening of CC.Conclusion:Distinct sera levels of sCD95 & TNF-α in CC patients showed an anti-apoptotic effect, which can be considered for early detection of CC.Key Words: Apoptosis, sCD95, Jurkat Cells, Tumor Necrosis Factor-alpha, Uterine Cervical Neoplasms  相似文献   
43.
44.
A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways. To better understand the biology of protein glutarylation, we studied the relationship between enzymes within the lysine/tryptophan catabolic pathways, protein glutarylation, and regulation by the deglutarylating enzyme sirtuin 5 (SIRT5). Here, we identify glutarylation on the lysine oxidation pathway enzyme glutaryl-CoA dehydrogenase (GCDH) and show increased GCDH glutarylation when glutaryl-CoA production is stimulated by lysine catabolism. Our data reveal that glutarylation of GCDH impacts its function, ultimately decreasing lysine oxidation. We also demonstrate the ability of SIRT5 to deglutarylate GCDH, restoring its enzymatic activity. Finally, metabolomic and bioinformatic analyses indicate an expanded role for SIRT5 in regulating amino acid metabolism. Together, these data support a feedback loop model within the lysine/tryptophan oxidation pathway in which glutaryl-CoA is produced, in turn inhibiting GCDH function via glutaryl modification of GCDH lysine residues and can be relieved by SIRT5 deacylation activity.  相似文献   
45.
High-throughput sequencing enables rapid genome sequencing during infectious disease outbreaks and provides an opportunity to quantify the evolutionary dynamics of pathogens in near real-time. One difficulty of undertaking evolutionary analyses over short timescales is the dependency of the inferred evolutionary parameters on the timespan of observation. Crucially, there are an increasing number of molecular clock analyses using external evolutionary rate priors to infer evolutionary parameters. However, it is not clear which rate prior is appropriate for a given time window of observation due to the time-dependent nature of evolutionary rate estimates. Here, we characterize the molecular evolutionary dynamics of SARS-CoV-2 and 2009 pandemic H1N1 (pH1N1) influenza during the first 12 months of their respective pandemics. We use Bayesian phylogenetic methods to estimate the dates of emergence, evolutionary rates, and growth rates of SARS-CoV-2 and pH1N1 over time and investigate how varying sampling window and data set sizes affect the accuracy of parameter estimation. We further use a generalized McDonald–Kreitman test to estimate the number of segregating nonneutral sites over time. We find that the inferred evolutionary parameters for both pandemics are time dependent, and that the inferred rates of SARS-CoV-2 and pH1N1 decline by ∼50% and ∼100%, respectively, over the course of 1 year. After at least 4 months since the start of sequence sampling, inferred growth rates and emergence dates remain relatively stable and can be inferred reliably using a logistic growth coalescent model. We show that the time dependency of the mean substitution rate is due to elevated substitution rates at terminal branches which are 2–4 times higher than those of internal branches for both viruses. The elevated rate at terminal branches is strongly correlated with an increasing number of segregating nonneutral sites, demonstrating the role of purifying selection in generating the time dependency of evolutionary parameters during pandemics.  相似文献   
46.
Abstract

Desert plant species commonly use seed dormancy to prevent germination during unfavorable environmental conditions and thus increase the probability of seedling survival. Seed dormancy presents a challenge for restoration ecology, particularly in desert species for which our knowledge of dormancy regulation is limited. In the present study the effect of gibberellic acid (GA3) and potassium nitrate (KNO3) on seed dormancy release was investigated on eight Arabian desert species. Both treatments significantly enhanced the germination of most species tested. GA3 was more effective than KNO3 in enhancing germination percentage, reducing mean germination time and synchronizing the germination in most of the studied species. Light requirement during germination was species-specific, but in general the presence of light promoted germination more effectively when combined with KNO3 and GA3. The wide variation in dormancy and germination requirements among the tested species is indicative of distinct germination niches, which might assist their co-existence in similar habitat/environmental conditions. Seed pre-treatments that optimize germination in this habitat must therefore be assessed for individual species to improve the outcomes of ecological restoration.  相似文献   
47.
The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the inner nuclear membrane and represents an important determinant of interphase nuclear architecture. Its major components are the A- and B-type lamins. Whereas B-type lamins are found in all mammalian cells, A-type lamin expression is developmentally regulated. In the mouse, A-type lamins do not appear until midway through embryonic development, suggesting that these proteins may be involved in the regulation of terminal differentiation. Here we show that mice lacking A-type lamins develop to term with no overt abnormalities. However, their postnatal growth is severely retarded and is characterized by the appearance of muscular dystrophy. This phenotype is associated with ultrastructural perturbations to the nuclear envelope. These include the mislocalization of emerin, an inner nuclear membrane protein, defects in which are implicated in Emery-Dreifuss muscular dystrophy (EDMD), one of the three major X-linked dystrophies. Mice lacking the A-type lamins exhibit tissue-specific alterations to their nuclear envelope integrity and emerin distribution. In skeletal and cardiac muscles, this is manifest as a dystrophic condition related to EDMD.  相似文献   
48.
We consider the efficient initialization of structure and parameters of generalized Gaussian radial basis function (RBF) networks using fuzzy decision trees generated by fuzzy ID3 like induction algorithms. The initialization scheme is based on the proposed functional equivalence property of fuzzy decision trees and generalized Gaussian RBF networks. The resulting RBF network is compact, easy to induce, comprehensible, and has acceptable classification accuracy with stochastic gradient descent learning algorithm.  相似文献   
49.
The serine hydroxymethyltransferase from Bacillus subtilis (bsSHMT) and B. stearothermophilus (bstSHMT) are both homodimers and share approximately 77% sequence identity; however, they show very different thermal stabilities and unfolding pathways. For investigating the role of N- and C-terminal domains in stability and unfolding of dimeric SHMTs, we have swapped the structural domains between bs- and bstSHMT and generated the two novel chimeric proteins bsbstc and bstbsc, respectively. The chimeras had secondary structure, tyrosine, and pyridoxal-5'-phosphate microenvironment similar to that of the wild-type proteins. The chimeras showed enzymatic activity slightly higher than that of the wild-type proteins. Interestingly, the guanidium chloride (GdmCl)-induced unfolding showed that unlike the wild-type bsSHMT, which undergoes dissociation of native dimer into monomers at low guanidium chloride (GdmCl) concentration, resulting in a non-cooperative unfolding of enzyme, its chimera bsbstc, having the C-terminal domain of bstSHMT was resistant to low GdmCl concentration and showed a GdmCl-induced cooperative unfolding from native dimer to unfolded monomer. In contrast, the wild-type dimeric bstSHMT was resistant to low GdmCl concentration and showed a GdmCl-induced cooperative unfolding, whereas its chimera bstbsc, having the C- terminal domain of bsSHMT, showed dissociation of native dimer into monomer at low GdmCl concentration and a GdmCl-induced non-cooperative unfolding. These results clearly demonstrate that the C-terminal domain of dimeric SHMT plays a vital role in stabilization of the oligomeric structure of the native enzyme hence modulating its unfolding pathway.  相似文献   
50.
Composting technique was used for bioremediation of industrial soil originating from a former tar-contaminated site. The composting process was regulated by aeration to keep optimal temperature gradient and concentrations of O2 and CO2 inside the composting pile. The efficiency of bioremediation was evaluated by performing analysis of 11 individual three- to six-ring unsubstituted aromatic hydrocarbons (PAH) and estimating of changes in ecotoxicity of the contaminated soil. After 42 d of composting, PAH with 3–4 rings were removed from 42 to 68%, other higher-molar mass PAH from 35 to 57%. Additional 100 d of compost maturation in open-air field did not result in a further decrease of PAH. Ecotoxicity tests performed with bioluminescent bacteriaVibrio fischerii showed a decrease in toxicity both after composting and maturation phases. However, toxicity tests on mustard-seed germination did not reveal any significant changes during composting and maturation phases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号