首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   17篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   10篇
  2013年   11篇
  2012年   12篇
  2011年   16篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   10篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   5篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
排序方式: 共有142条查询结果,搜索用时 46 毫秒
11.
The yeast 2 micron plasmid achieves high fidelity segregation by coupling its partitioning pathway to that of the chromosomes. Mutations affecting distinct steps of chromosome segregation cause the plasmid to missegregate in tandem with the chromosomes. In the absence of the plasmid stability system, consisting of the Rep1 and Rep2 proteins and the STB DNA, plasmid and chromosome segregations are uncoupled. The Rep proteins, acting in concert, recruit the yeast cohesin complex to the STB locus. The periodicity of cohesin association and dissociation is nearly identical for the plasmid and the chromosomes. The timely disassembly of cohesin is a prerequisite for plasmid segregation. Cohesin-mediated pairing and unpairing likely provides a counting mechanism for evenly partitioning plasmids either in association with or independently of the chromosomes.  相似文献   
12.
Crystallographic and spectroscopic studies of a model dipeptidecontaining unusual amino acid residues establish the presence ofan intramolecular, 5-membered NH...N hydrogen bond involvingan amide NH (from 3-amino phenyl acetic acid residue) and anamide N atom from an adjacent amino acid residue in solid stateand in solution. The dipeptide also forms an infinite -sheet ribbon structure in crystals.  相似文献   
13.
Toxoplasma gondii infection in marine mammals is of interest because of mortality and mode of transmission. It has been suggested that marine mammals become infected with T. gondii oocysts washed from land to the sea. We report the isolation and genetic characterization of viable T. gondii from a striped dolphin (Stenella coeruleoalba), the first time from this host. An adult female dolphin was found stranded on the Pacific Coast of Costa Rica, and the animal died the next day. The dolphin had a high (1:6400) antibody titer to T. gondii in the modified agglutination test. Severe nonsuppurative meningoencephalomyelitis was found in its brain and spinal cord, but T. gondii was not found in histological sections of the dolphin. Portions of its brain and the heart were bioassayed in mice for the isolation of T. gondii. Viable T. gondii was isolated from the brain, but not from the heart, of the dolphin. A cat fed mice infected with the dolphin isolate (designated TgSdCol) shed oocysts. Genomic DNA from tachyzoites of this isolate was used for genotyping at 10 genetic loci, including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico, and this TgSdCo1 isolate was found to be Type II.  相似文献   
14.
Ion pairs contribute to several functions including the activity of catalytic triads, fusion of viral membranes, stability in thermophilic proteins and solvent-protein interactions. Furthermore, they have the ability to affect the stability of protein structures and are also a part of the forces that act to hold monomers together. This paper deals with the possible ion pair combinations and networks in 25% and 90% non-redundant protein chains. Different types of ion pairs present in various secondary structural elements are analysed. The ion pairs existing between different subunits of multisubunit protein structures are also computed and the results of various analyses are presented in detail. The protein structures used in the analysis are solved using X-ray crystallography, whose resolution is better than or equal to 1.5 A and R-factor better than or equal to 20%. This study can, therefore, be useful for analyses of many protein functions. It also provides insights into the better understanding of the architecture of protein structure.  相似文献   
15.
The mammalian Retinoblastoma (RB) family including pRB, p107, and p130 represses E2F target genes through mechanisms that are not fully understood. In D. melanogaster, RB-dependent repression is mediated in part by the multisubunit protein complex Drosophila RBF, E2F, and Myb (dREAM) that contains homologs of the C. elegans synthetic multivulva class B (synMuvB) gene products. Using an integrated approach combining proteomics, genomics, and bioinformatic analyses, we identified a p130 complex termed DP, RB-like, E2F, and MuvB (DREAM) that contains mammalian homologs of synMuvB proteins LIN-9, LIN-37, LIN-52, LIN-54, and LIN-53/RBBP4. DREAM bound to more than 800 human promoters in G0 and was required for repression of E2F target genes. In S phase, MuvB proteins dissociated from p130 and formed a distinct submodule that bound MYB. This work reveals an evolutionarily conserved multisubunit protein complex that contains p130 and E2F4, but not pRB, and mediates the repression of cell cycle-dependent genes in quiescence.  相似文献   
16.
17.
This study presents a special, economically valuable, unprecedented eco-friendly green process for the synthesis of silver nanoparticles. The silver nanoparticles were obtained from a waste material with oil palm biosolid extract as the reducing agent. The use of the oil palm biosolid extract for the nanoparticle synthesis offers the benefit of amenability for large-scale production. An aqueous solution of silver (Ag(+) ) ions was treated with the oil palm biosolid extract for the formation of Ag nanoparticles. The nanometallic dispersion was characterized by surface plasmon absorbance measuring 428 nm. Transmission electron microscopy showed the formation of silver nanoparticles in the range of 5-50 nm. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction analysis of the freeze-dried powder confirmed the formation of metallic silver nanoparticles. Moreover, Fourier Transform Infrared Spectroscopy provided evidence of phenolics or proteins as the biomolecules that were likely responsible for the reduction and capping agent, which helps to increase the stability of the synthesized silver nanoparticles. In addition, we have optimized the production with various parameters.  相似文献   
18.
High throughput macromolecular structure determination is very essential in structural genomics as the available number of sequence information far exceeds the number of available 3D structures. ACORN, a freely available resource in the CCP4 suite of programs is a comprehensive and efficient program for phasing in the determination of protein structures, when atomic resolution data are available. ACORN with the automatic model-building program ARP/wARP and refinement program REFMAC is a suitable combination for the high throughput structural genomics. ACORN can also be run with secondary structural elements like helices and sheets as inputs with high resolution data. In situations, where ACORN phasing is not sufficient for building the protein model, the fragments (incomplete model/dummy atoms) can again be used as a starting input. Iterative ACORN is proved to work efficiently in the subsequent model building stages in congerin (PDB-ID: lis3) and catalase (PDB-ID: 1gwe) for which models are available.  相似文献   
19.
In all organisms, cell polarity is fundamental for most aspects of cell physiology. In many species and cell types, it is controlled by the evolutionarily conserved PAR-3, PAR-6 and aPKC proteins, which are asymmetrically localized at the cell cortex where they define specific domains. While PAR proteins define the antero-posterior axis of the early C. elegans embryo, the mechanism controlling their asymmetric localization is not fully understood. Here we studied the role of endocytic regulators in embryonic polarization and asymmetric division. We found that depleting the early endosome regulator RAB-5 results in polarity-related phenotypes in the early embryo. Using Total Internal Reflection Fluorescence (TIRF) microscopy, we observed that PAR-6 is localized at the cell cortex in highly dynamic puncta and depleting RAB-5 decreased PAR-6 cortical dynamics during the polarity maintenance phase. Depletion of RAB-5 also increased PAR-6 association with clathrin heavy chain (CHC-1) and this increase depended on the presence of the GTPase dynamin, an upstream regulator of endocytosis. Interestingly, further analysis indicated that loss of RAB-5 leads to a disorganization of the actin cytoskeleton and that this occurs independently of dynamin activity. Our results indicate that RAB-5 promotes C. elegans embryonic polarity in both dynamin-dependent and -independent manners, by controlling PAR-6 localization and cortical dynamics through the regulation of its association with the cell cortex and the organization of the actin cytoskeleton.  相似文献   
20.
Protein Kinase C β-II (PKC β-II) is an important enzyme in the development of diabetic complications like cardiomyopathy, retinopathy, neuropathy, nephropathy and angiopathy. PKC β-II is activated in vascular tissues during diabetic vascular abnormalities. Thus, PKC β-II is considered as a potent drug target and the crystal structure of the kinase domain of PKC β-II (PDB id: 2I0E) was used to design inhibitors using Structure-Based Drug Design (SBDD) approach. Sixty inhibitors structurally similar to Staurosporine were retrieved from PubChem Compound database and High Throughput Virtual screening (HTVs) was carried out with PKC β-II. Based on the HTVs results and the nature of active site residues of PKC β-II, Staurosporine inhibitors were designed using SBDD. Induced Fit Docking (IFD) studies were carried out between kinase domain of PKC β-II and the designed inhibitors. These IFD complexes showed favorable docking score, glide energy, glide emodel and hydrogen bond and hydrophobic interactions with the active site of PKC β-II. Binding free energy was calculated for IFD complexes using Prime MM-GBSA method. The conformational changes induced by the inhibitor at the active site of PKC β-II were observed for the back bone Cα atoms and side-chain chi angles. PASS prediction tool was used to analyze the biological activities for the designed inhibitors. The various physicochemical properties were calculated for the compounds. One of the designed inhibitors successively satisfied all the in silico parameters among the others and seems to be a potent inhibitor against PKC β-II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号